субстрат в медицине что это

СУБСТРАТ

Смотреть что такое «СУБСТРАТ» в других словарях:

СУБСТРАТ — (от позднелат. substratum основа, букв. подстилка) общая основа многообразных явлений; основа общности или сходства однородных явлений; совокупность относительно простых, в определенном смысле элементарных оснований, взаимодействие которых… … Философская энциклопедия

СУБСТРАТ — СУБСТРАТ, в биохимии реагент, на который действует ЭНЗИМ или другой КАТАЛИЗАТОР. В биологии питательная среда, служащая для выращивания микроорганизмов, или поверхность, на которой обитает «сидячий» организм (например, моллюск блюдечко). В… … Научно-технический энциклопедический словарь

Субстрат — язык местного населения, вытесненный языком пришельцев, но оказавший влияние на него. По английски: Substrat См. также: Языки Билингвизм Финансовый словарь Финам … Финансовый словарь

субстрат — порода, основа, материя, среда Словарь русских синонимов. субстрат сущ., кол во синонимов: 4 • материя (50) • основ … Словарь синонимов

СУБСТРАТ — (на средневековой латыни substratum подстилка, основа), 1) в биологии основа (предмет или вещество), к которой прикреплены растительные или животные организмы, а также среды обитания и развития организмов, например питательная среда для… … Современная энциклопедия

СУБСТРАТ — (от средневекового лат. substratum подстилка Основа), в биологии,1) химическое вещество, подвергающееся превращению под действием фермента. Концентрация субстрата в клетке оказывает регулирующее влияние на активность фермента.2) Основа (предмет… … Большой Энциклопедический словарь

СУБСТРАТ — в философии общая основа всех процессов и явлений … Большой Энциклопедический словарь

СУБСТРАТ — язык населения, первоначально обитавшего на данной территории; следы влияния этого языка в языке пришельцев (ср. Адстрат, Суперстрат) … Большой Энциклопедический словарь

СУБСТРАТ — СУБСТРАТ, субстрата, муж. (лат. substratum основа, подкладка). 1. То, что лежит в основе чего нибудь, каких нибудь явлений, состояний (филос., научн.). 2. Питательная среда, в которой развиваются микроорганизмы (биол.). Толковый словарь Ушакова.… … Толковый словарь Ушакова

СУБСТРАТ — СУБСТРАТ, а, муж. (спец.). 1. То, что лежит в основе каких н. явлений, состояний. Языковый с. (в системе языка: усвоенные ею элементы языка населения, первонач. жившего на данной территории). 2. Питательная среда для прикреплённых к ней… … Толковый словарь Ожегова

Источник

Пребиотики и синобиотики: применение и состав + полезная таблица

В прошлой публикации мы собрали воедино научно-обоснованные факты о пробиотиках и дали таблицу с составом ЛС и БАД. В этой статье разбираемся с местом пре- и синбиотиков в современной медицине

Пребиотики – этот термин используется для обозначения как пребиотиков (содержащих вещества, способствующие росту микроорганизмов), так и метабиотиков (содержащих метаболиты, продукты жизнедеятельности микрорганизмов). Самые распространённые из пребиотических компонентов: олигофруктоза, инулин, галакто-олигосахариды, лактулоза, олигосахариды грудного молока, бутират, молочная кислота и др.

Механизмы действия пребиотиков связаны с взаимодействием между микробиотой и макроорганизмом и разделяются на:

К пребиотикам предъявляются достаточно строгие требования:

Галоктоолигосахариды, олигофруктоза, фруктоолигосахариды (глюкоза, фруктоза, декстроза, мальтоза, мальтотриоза, мальтодекстрин – представлены в составе синбиотиков), лактулоза ( Дюфалак, Нормазе, Портлак, Прелакс и т.д. )

Водный субстрат продуктов обмена веществ Escherichia coli DSM 4087, Enterococcus faecalis DSM 4086, Lactobacillus acidophilus DSM 4149 и Lactobacillus helveticus DSM 4183 ( Хилак Форте )

Кальция бутират + инулин ( Закофальк )

Метаболиты бесклеточной культуральной жидкости бактерий B.subtilis штамм 3 + цеолит + ферментированный гидролизат соевой муки ( Бактистатин )

Секреторные ферменты от 16 штаммов лактобактерий, полученные путем брожения в течение 1 года на сое+лимонная кислота+молочная кислота ( Дайго )

Область применения пребиотиков: коррекция и профилактика дисбиотических состояний. [3,4]. При печеночной энцефалопатии и при функциональном запоре в качестве монотерапии рекомендована лактулоза с высоким уровнем доказательности (A-B, об уровнях доказательности читайте здесь ) [1]. В международных рекомендациях для профилактики (или профилактика рецидива) антибиотик-ассоциированной диареи (в т.ч. вызванной Clostridium difficile ) рекомендованы в комплексной терапии – олигофруктоза 4 г, три раза в день со средним уровнем доказательности [2]. При синдроме раздраженного кишечника назначение пребиотиков влияет на качество жизни (за счёт нормализации стула, уменьшения числа обострений и интенсивности абдоминального болевого синдрома),– короткоцепочечные фруктоолигосахариды 5 г/ежедневно или галакто-олигосахариды 3.5 г/ежедневно – с уровнем доказательности B-C [1].

Отметим, что в РФ фрукто- и олигосахариды представлены в только в виде комбинированных препаратов, а в рекомендуемых количествах только в составе некоторых синбиотиков, н апример, в БАД Энтеролактис, Максилак, РиоФлора. Во многих средствпх количественный состав не уточнен.

Синбиотики

Lactobacillus acidophilus CBT LA1 + Lactobacillus rhamnosus CBT LR5 + Bifidobacterium longum CBT BG7 + Bifidobacterium lactis CBT BL3 + Bifidobacterium bifidum CBT BF3 +Streptococcus thermophilus CBT ST3 + фруктоолигосахариды ( Необиотик Лактобаланс )

Lactobacillus acidophilus CBT LA14 + Lactobacillus rhamnosus CBT LR32 + Bifidobacterium lactis CBT BL4 + инулин + витамины группы В-В1,В6,В12 ( Флориоза )

Lactobacillus rhamnosus + Bifidobacterium bifidum + Lactobacillus acidophilus + Lactobacillus plantarum + Lactobacillus bulgaricus +инулин+псилиум ( Фитомуцил Сорбент форте )

Lactobacillus Acidofilus LA-5 и Bifidobacterium ВВ-12 + фруктоолигосахариды + нутриоза + гидроксипропилметилцеллюлоза ( Флорок форте )

Bifidobacterium animalis subspecies lactis BS01 + инулин, мальтодекстрин ( Пробиолог транзит [H7] )

Bifidobacterium bifidum + Bifidobacterium longum + Bifidobacterium infantis + Lactobacillus rhamnosus+ микрокристаллическая целлюлоза + олигофруктоза ( Флоросан )

L.rhamnosus R049 + L.caseiR215 + L.plantarum R202 + L.acidophilus R053 + B.longum R023 + B.bifidum R071 + B.breve R070 + фруктоолигосахариды ( Флора-Дофилус )

Bifidobacterium bifidum W23 + Bifidobacterium lactis W51 + Lactobacillus acidophilus W37 + Lactobacillus acidophilus W55 + Lactobacillus paracasei W20 + Lactobacillus plantarum W62 + Lactobacillus rhamnosus W71 + Lactobacillus salivarius W24 + инулин + фруктоолигосахариды 1,2% ( РиоФлора )

Bifidobacterium longum + Bifidobacterium breve + Lactobacillus acidophilus + Lactobacillus rhamnosus + Lactobacillus plantarum + Lactobacillus casei + Lactococcus lactis + Streptococcus thermophilus + Фруктоолигосахариды 5 г + микрокристаллическая целлюлоза ( Максилак )

Lactobacillus acidophilus DDS®-1, B.bifidum UABB-10, B.longum UABL-14, B.lactis UABLA-12, рисовый мальтодекстрин, фруктоологосахариды ( ЛББ )

Синбиотики, отличаются от пробиотиков наличием пребиотических компонентов, а также более сбалансированным составом c большим количеством штаммов микроорганизмов в составе препаратов. Обычно комбинацию составляют несколько штаммов бифдо- и лактобактерий. Также синбиотики, зарегистрированные в последние несколько лет, уже имеют в составе пробиотические компоненты в рекомендуемых дозах – около 5 г фрукто-олигосахаридов.

В настоящий момент со средним и низким уровнем доказательности (B-C), ввиду недостаточного количества исследований, рекомендованы следующие комбинации:

Увеличение количества компонентов не сделало синбиотики универсальными препаратами. При разных состояниях показали свою эффективность разные комбинации микроорганизмов.

Подводим итог по всем биотикам

На данный момент все рекомендации по биотикам имеют слабую силу. Для некоторых нозоологий (неспецифический язвенный колит, болезнь Крона, диарея, псевдомембранозный колит) назначение пробиотиков, особенно комбинаций, не рекомендуется из-за недостаточной степени изученности [1,5]. Так же есть вероятность развития сепсиса, вызванного штаммами пробиотических микроорганизмов, у групп риска – наличие иммунного дефицита, ослабленные пациенты, в т.ч. с онкологическими заболеваниями, нарушением кишечного эпителиального барьера. [6]

В настоящий момент основное место применения для про-, пре или синбиотика это профилактика дисбиотических состояний и лечение дисбиоза при конкретной патологии в составе комплексной терапии. В клинической практике продолжают использоваться пробиотики всех поколений. Эффект от пребиотика проявится быстрее, но пробиотик будет работать дольше. Выбор препарата будет обусловлен не только клиническими рекомендациями, безопасностью препарата, но также конкретной клинической ситуацией: при наличии синдрома диареи – препаратом выбора может быть пробиотик 4го поколения или синбиотик, при наличии синдрома избыточного бактериального роста – санирующие пробиотики 2-го поколения, а при запоре – лучше показали себя некоторые пребиотики. Но то, как будет работать про- или пребиотик в каждой конкретной ситуации зависит не только от самого препарата, но и от индивидуальных особенностей микробиоты человека.

Применение пробиотических и пребиотических и синбиотических препаратов продолжает оставаться перспективным для дальнейших клинических исследований. Пробиотические препараты широко используются в медицинской реабилитации и комплексе профилактических мероприятий [2]. Дальнейшие исследования будут способствовать усилению требований к данным препаратам с точки зрения безопасности и доказанной эффективности. Несмотря на большое разнообразие различных штаммов микроорганизмов и их комбинаций, остается нерешенной проблемой индивидуального подбора препаратов. Это связано с тем, что кишечный микробиом у каждого человека индивидуален, а современные методы для оценки состава кишечной микробиоты не применяются широко.

Источник

СУБСТРАТЫ

Субстратами в биохимии называют специфические вещества, на которые оказывают воздействие определенные ферменты. Предметом лабораторных биохимических исследований крови на субстраты являются креатинин, мочевина, мочевая кислота, а также скорость клубочковой фильтрации.

Креатинин является конечным продуктом распада креатина, который синтезируется преимущественно в печени, откуда током крови доставляется в мышцы. В ходе биохимических реакций креатин превращается в креатинин, который из мышечной ткани попадает в почки. У здорового человека он свободно фильтруется в почечных клубочках и полностью выводится с мочой. Его повышенная концентрация в крови говорит об ухудшении процесса почечной фильтрации. Это может быть связано со следующими состояниями и особенностями образа жизни:

* Стоимость лабораторных исследований без учёта стоимости забора биоматериала. Цены действительны для московского региона.
** Срочное исполнение действительно только для московского региона.

субстрат в медицине что это. Смотреть фото субстрат в медицине что это. Смотреть картинку субстрат в медицине что это. Картинка про субстрат в медицине что это. Фото субстрат в медицине что этоКачество клубочковой фильтрации и выведения мочи оценивают также и по концентрации в крови мочевины – азотосодержащего продукта белкового обмена. Вещество производится в печени, потом попадает с кровью в почки, фильтруется в клубочках и выделяется с мочой. Концентрация выделяемой мочевины напрямую зависит от количества потребленного белка. При снижении клубочковой фильтрации значение показателя увеличивается, чаще всего это связано с заболеваниями почек. Содержание мочевины может быть и ниже нормы из-за патологий печени, поскольку поврежденные клетки этого органа не способны ее синтезировать.

Для диагностики подагры проводится исследование крови на мочевую кислоту, являющуюся продуктом распада нуклеиновых кислот и пуриновых оснований. Если вещества производится слишком много или оно плохо выводится с мочой, его концентрация в крови повышена. Стабильно высокий уровень приводит к подагре – воспалению суставов из-за отложения кристаллов мочевой кислоты в суставной жидкости, а также формированию камней в мочевыделительной системе.

Сдать кровь на субстраты в Москве и других городах России можно в сети лабораторий «Литех». Все медицинские учреждения компании оснащены современным оборудованием, штат состоит из специалистов высокого уровня, поэтому исследования выполняются быстро и точно. Стоимость услуг невысока, часто бывают акции, позволяющие экономить средства. Офисы компании работают по удобному графику, сдать анализы можно даже в выходные дни. «Литех» выполняет большой спектр различных лабораторных исследований, результаты которых можно получить по электронной почте.

Источник

Возможности тонкоигольной аспирационной биопсии молочной железы

субстрат в медицине что это. Смотреть фото субстрат в медицине что это. Смотреть картинку субстрат в медицине что это. Картинка про субстрат в медицине что это. Фото субстрат в медицине что это

Онкоигольная аспирационная биопсия (ТАБ) является одной из самых информативных и наиболее безопасных инвазивных методик при дифферен­циальной диагностике образований молочной железы.

Узловые образования молочной железы пальпаторно выявляются при их разме­рах от 1 см и более. Образования менее 1 см при пальпаторном методе исследова­ния определяются при расположении их достаточно близко к подкожно-жировой клетчатке. В последнее время обнаружено, что их распространенность практиче­ски не зависит от возраста. Даже у детей и подростков встречаются множествен­ные узловые образования как кистозной, так и солидной структуры. Причем с возрастом вероятность злокачественного процесса в узловом образовании увели­чивается в несколько раз и даже десятков раз.

Тонкоигольная аспирационная биопсия (ТАБ) впервые была описана в 1948 году, а в дальнейшем начала внедряться в широкую клиническую практику как один из наиболее точных и безопасных методов дифференциальной диагностики узловых образований в молочных железах. Пример­но более чем в 40% случаев информативность ТАБ оказывается недостаточной из-за получения неинформативного материала, а также вследствие постановки так называемого «непонятного» диагноза.

субстрат в медицине что это. Смотреть фото субстрат в медицине что это. Смотреть картинку субстрат в медицине что это. Картинка про субстрат в медицине что это. Фото субстрат в медицине что это

Показания к тонкоигольной аспирационной биоп­сии молочной железы

Возможности тонкоигольной аспирационной биопсии молочной железы.

ТАБ можно проводить в амбулаторных условиях.

Пациент должен быть предупрежден о проведении инвазивной методики и воз­можности повторной ТАБ при получении неинформативного пунктата, а также возникновении возможных, пусть даже минимальных, осложнений.

Пациент, как правило, находится в положении лежа на кушетке. Под контро­лем ультразвука игла вводится в образование в молочной железе, после чего осу­ществляется медленная аспирация содержимого, которая прекращается сразу после появления в шприце аспирата. Не допускается смещение иглы в сторону от узла во избежание попадания содержимого других тканей.

субстрат в медицине что это. Смотреть фото субстрат в медицине что это. Смотреть картинку субстрат в медицине что это. Картинка про субстрат в медицине что это. Фото субстрат в медицине что это

Факторы, влияющие на адекватность и качество пунктата

На качество пунктата и, следовательно, цитологический диагноз оказывают существенное влияние следующие факторы.

Ни в коем случае нельзя уменьшать роль пальпаторного метода исследования образования молочной железы, заменяя его только ультразвуковым исследовани­ем. Роль врача-клинициста никогда не заменится превалирующей ролью врача ультразвуковой диагностики. Пальпаторная оценка плотности узла позволит при проведении ТАБ выбрать оптимальную силу при проведении аспирации ткани об­разования.

Для повышения качества диагностики возможно проведение нескольких пунк­ций одного узла. Многими исследователями было доказано, что число пункций прямо пропорционально адекватности поставленного цитологического диагноза.

Источник

Кишечная микрофлора и значение пребиотиков для ее функционирования

Микрофлора кишечника человека является составляющей человеческого организма и выполняет многочисленные жизненно важные функции. Общая численность микроорганизмов, обитающих в различных частях макроорганизма, приблизительно на два порядка превышает числен

У здоровых лиц в кишечнике насчитывается более 500 видов микроорганизмов. Общая масса микрофлоры кишечника составляет от 1 до 3 кг. В разных отделах ЖКТ количество бактерий различно, большинство микроорганизмов локализованы в толстой кишке (около 10 10–12 КОЕ/мл, что составляет 35–50% ее содержимого). Состав кишечной микрофлоры достаточно индивидуален и формируется с первых дней жизни ребенка, приближаясь к показателям взрослого к концу 1-го — 2-му году жизни, претерпевая некоторые изменения в пожилом возрасте (табл. 1). У здоровых детей в толстой кишке обитают представители факультативно-анаэробных бактерий рода Streptococcus, taphylococcus, Lactobacillus, nterobacteriacae, Candida и более чем 80% биоценоза занимают анаэробные бактерии, чаще грамположительные: пропионобактерии, вейлонеллы, эубактерии, анаэробные лактобациллы, пептококки, пептострептококки, а также грамотрицательные бактероиды и фузобактерии.

Вся совокупность микроорганизмов и макроорганизм составляют своеобразный симбиоз, где каждый извлекает выгоды для своего существования и оказывает влияние на партнера. Функции кишечной микрофлоры по отношению к макроорганизму реализуются как локально, так и на системном уровне, при этом различные виды бактерий вносят свой вклад в это влияние. Микрофлора пищеварительного тракта выполняет следующие функции.

Так, бифидобактерии за счет ферментации олиго- и полисахаридов продуцируют молочную кислоту и ацетат, которые обеспечивают бактерицидную среду, секретируют вещества-ингибиторы роста патогенных бактерий, что повышает резистентность организма ребенка к кишечным инфекциям. Модуляции иммунного ответа ребенка бифидобактериями также выражаются в снижении риска развития пищевой аллергии.

Лактобациллы уменьшают активность пероксидазы, оказывая антиоксидантный эффект, обладают противоопухолевой активностью, стимулируют продукцию иммуноглобулина А (IgA), подавляют рост патогенной микрофлоры и стимулируют рост лакто- и бифидофлоры, оказывают противовирусное действие.

Из представителей энтеробактерий наиболее важное значение имеет Escherichia coli M17, которая вырабатывает колицин В, за счет чего подавляет рост шигелл, сальмонелл, клебсиелл, серраций, энтеробактеров и оказывает незначительное влияние на рост стафилококков и грибов. Также кишечная палочка способствуют нормализации микрофлоры после антибактериальной терапии и воспалительных и инфекционных заболеваний.

Кишечные палочки, бифидо- и лактобактерии выполняют витаминообразующую функцию (участвуют в синтезе и всасывании витаминов К, группы В, фолиевой и никотиновой кислот). По способности синтезировать витамины кишечная палочка превосходит все остальные бактерии кишечной микрофлоры, синтезируя тиамин, рибофлавин, никотиновую и пантотеновую кислоты, пиридоксин, биотин, фолиевую кислоту, цианокобаламин и витамин К. Бифидобактерии синтезируют аскорбиновую кислоту, бифидо- и лактобактерии способствуют всасыванию кальция, витамина D, улучшают всасывание железа (благодаря созданию кислой среды).

Процесс пищеварения условно можно разделить на собственное (дистанционное, полостное, аутолитическое и мембранное), осуществляемое ферментами организма, и симбиозное пищеварение, происходящее при содействии микрофлоры. Микрофлора кишечника человека участвует в ферментации нерасщепленных ранее компонентов пищи, главным образом углеводов, таких, как крахмал, олиго- и полисахариды (в том числе и целлюлоза), а также белков и жиров.

Не всосавшиеся в тонкой кишке белки и углеводы в слепой кишке подвергаются более глубокому бактериальному расщеплению — преимущественно кишечной палочкой и анаэробами. Конечные продукты, образующиеся в результате процесса бактериальной ферментации, оказывают различное влияние на состояние здоровья человека. Например, бутират необходим для нормального существования и функционирования колоноцитов, является важным регулятором их пролиферации и дифференцировки, а также всасывания воды, натрия, хлора, кальция и магния. Вместе с другими летучими жирными кислотами он оказывает влияние на моторику толстой кишки, в одних случаях ускоряя ее, в других — замедляя. При расщеплении полисахаридов и гликопротеинов внеклеточными микробными гликозидазами образуются, помимо прочего, моносахариды (глюкоза, галактоза и т. д.), при окислении которых в окружающую среду выделяется в виде тепла не менее 60% их свободной энергии.

Среди важнейших системных функций микрофлоры — поставка субстратов глюконеогенеза, липогенеза, а также участие в метаболизме белков и рециркуляции желчных кислот, стероидов и других макромолекул. Превращение холестерина в не всасывающийся в толстой кишке копростанол и трансформация билирубина в стеркобилин и уробилин возможны только при участии бактерий, находящихся в кишечнике.

Протективная роль сапрофитной флоры реализуется как на местном, так и на системном уровнях. Создавая кислую среду, благодаря образованию органических кислот и снижению рН среды толстой кишки до 5,3–5,8, симбионтная микрофлора защищает человека от колонизации экзогенными патогенными микроорганизмами и подавляет рост уже имеющихся в кишечнике патогенных, гнилостных и газообразующих микроорганизмов. Механизм этого явления заключается в конкуренции микрофлоры за питательные вещества и участки связывания, а также в выработке нормальной микрофлорой определенных ингибирующих рост патогенов субстанций, обладающих бактерицидной и бактериостатической активностью, в том числе антибиотикоподобных. Низкомолекулярные метаболиты сахаролитической микрофлоры, в первую очередь летучие жирные кислоты, лактат и др., обладают заметным бактериостатическим эффектом. Они способны ингибировать рост сальмонелл, дизентерийных шигелл, многих грибов.

Также кишечная микрофлора усиливает местный кишечный иммунологический барьер. Известно, что у стерильных животных в lamina propria определяется очень малое количество лимфоцитов, кроме того, у этих животных наблюдается иммунодефицит. Восстановление нормальной микрофлоры быстро приводит к увеличению количества лимфоцитов в слизистой кишечника и исчезновению иммунодефицита. Сапрофитные бактерии в определенной степени обладают способностью модулировать уровень фагоцитарной активности, снижая его у людей, страдающих аллергией и, наоборот, повышая его у здоровых индивидуумов.

Таким образом, микрофлора ЖКТ не только формирует местный иммунитет, но и играет огромную роль в становлении и развитии иммунной системы ребенка, а также поддерживает ее активность у взрослого. Резидентная флора, особенно некоторые микроорганизмы, обладают достаточно высокими иммуногенными свойствами, что стимулирует развитие лимфоидного аппарата кишечника и местный иммунитет (в первую очередь за счет усиления продукции ключевого звена системы местного иммунитета — секреторного IgA), а также приводит к системному повышению тонуса иммунной системы, с активацией клеточного и гуморального звеньев иммунитета. Системная стимуляция иммунитета — одна из важнейших функций микрофлоры. Известно, что у безмикробных лабораторных животных не только подавлен иммунитет, но и происходит инволюция иммунокомпетентных органов. Поэтому при нарушениях микроэкологии кишечника, дефиците бифидофлоры и лактобацилл, беспрепятственном бактериальном заселении тонкой и толстой кишки возникают условия для снижения не только местной защиты, но и резистентности организма в целом.

Несмотря на достаточную иммуногенность, сапрофитные микроорганизмы не вызывают реакций иммунной системы. Возможно, это происходит потому, что сапрофитная микрофлора является своего рода хранилищем микробных плазмидных и хромосомных генов, обмениваясь генетическим материалом с клетками хозяина. Реализуются внутриклеточные взаимодействия путем эндоцитоза, фагоцитоза и пр. При внутриклеточных взаимодействиях достигается эффект обмена клеточным материалом. В результате представители микрофлоры приобретают рецепторы и другие антигены, присущие хозяину. Это делает их «своими» для иммунной системы макроорганизма. Эпителиальные ткани в результате такого обмена приобретают бактериальные антигены.

Обсуждается вопрос о ключевом участии микрофлоры в обеспечении противовирусной защиты хозяина. Благодаря феномену молекулярной мимикрии и наличию рецепторов, приобретенных от эпителия хозяина, микрофлора становится способной к перехвату и выведению вирусов, обладающих соответствующими лигандами.

Таким образом, наряду с низким рН желудочного сока, двигательной и секреторной активностью тонкой кишки, микрофлора ЖКТ относится к неспецифическим факторам защиты организма.

Важной функцией микрофлоры является синтез ряда витаминов. Человеческий организм получает витамины в основном извне — с пищей растительного или животного происхождения. Поступающие витамины в норме всасываются в тонкой кишке и частично утилизируются кишечной микрофлорой. Микроорганизмы, населяющие кишечник человека и животных, продуцируют и утилизируют многие витамины. Примечательно, что наиболее важную роль для человека в этих процессах играют микробы тонкой кишки, так как продуцируемые ими витамины могут эффективно всасываться и поступать в кровоток, тогда как витамины, синтезирующиеся в толстой кишке, практически не всасываются и для человека оказываются недоступными. Подавление микрофлоры (например, антибиотиками) снижает и синтез витаминов. Наоборот, создание благоприятных для микроорганизмов условий, например при употреблении в пищу достаточного количества пребиотиков, повышает обеспеченность макроорганизма витаминами.

Наиболее изучены в настоящее время аспекты, связанные с синтезом кишечной микрофлорой фолиевой кислоты, витамина В12 и витамина К.

Фолиевая кислота (витамин В9), поступая с продуктами питания, эффективно всасывается в тонкой кишке. Синтезирующийся в толстой кишке представителями нормальной кишечной микрофлоры фолат идет исключительно для ее собственных нужд и не утилизируется макроорганизмом. Тем не менее синтез фолата в толстой кишке может иметь большое значение для нормального состояния ДНК колоноцитов.

Кишечные микроорганизмы, синтезирующие витамин В12, обитают как в толстой, так и в тонкой кишке. Среди этих микроорганизмов наиболее активны в данном аспекте представители Pseudomonas и Klebsiella sp. Однако возможностей микрофлоры для полной компенсации гиповитаминоза В12 оказывается недостаточно.

С содержанием в просвете толстой кишки фолата и кобаламина, полученных с пищей или синтезированных микрофлорой, связана способность эпителия кишечника противостоять процессам канцерогенеза. Предполагается, что одной из причин более высокой частоты опухолей толстой кишки, по сравнению с тонкой, является недостаток цитопротекторных составляющих, большинство из которых всасывается в средних отделах ЖКТ. Среди них — витамин В12 и фолиевая кислота, которые совместно определяют стабильность клеточных ДНК, в частности ДНК клеток эпителия толстой кишки. Даже незначительный дефицит этих витаминов, не вызывающий анемию или другие тяжелые последствия, тем не менее приводит к значимым аберрациям в молекулах ДНК колоноцитов, способным стать основой канцерогенеза. Известно, что недостаточное поступление к колоноцитам витаминов В6, В12 и фолиевой кислоты ассоциируется с повышенной частотой рака толстой кишки в популяции. Дефицит витаминов приводит к нарушению процессов метилирования ДНК, мутациям и, как следствие, раку толстой кишки. Риск толстокишечного канцерогенеза повышается при низком потреблении пищевых волокон и овощей, обеспечивающих нормальное функционирование кишечной микрофлоры, синтезирующей трофические и протективные в отношении толстой кишки факторы.

Витамин К существует в нескольких разновидностях и необходим человеческому организму для синтеза различных кальцийсвязывающих белков. Источником витамина К1, филохинона, являются продукты растительного происхождения, а витамин К2, группа соединений менахинонов, синтезируется в тонкой кишке человека. Микробный синтез витамина К2 стимулируется при недостатке филохинона в диете и вполне способен его компенсировать. В то же время недостаточность витамина К2 при сниженной активности микрофлоры плохо корригируется диетическими мероприятиями. Таким образом, синтетические процессы в кишечнике являются приоритетными для обеспечения макроорганизма этим витамином. Витамин К синтезируется и в толстой кишке, но используется преимущественно для потребностей микрофлоры и колоноцитов.

Кишечная микрофлора принимает участие в детоксикации экзогенных и эндогенных субстратов и метаболитов (аминов, меркаптанов, фенолов, мутагенных стероидов и др.) и, с одной стороны, представляет собой массивный сорбент, выводя из организма токсические продукты с кишечным содержимым, а с другой — утилизирует их в реакциях метаболизма для своих нужд. Помимо этого, представители сапрофитной микрофлоры продуцируют на основе конъюгатов желчных кислот эстрагеноподобные субстанции, оказывающие влияние на дифференцировку и пролиферацию эпителиальных и некоторых других тканей путем изменения экспрессии генов или характера их действия.

Итак, взаимоотношения микро- и макроорганизма носят сложный характер, реализующийся на метаболическом, регуляторном, внутриклеточном и генетическом уровне. Однако нормальное функционирование микрофлоры возможно только при хорошем физиологическом состоянии организма и в первую очередь нормальном питании.

Питание микроорганизмов, населяющих кишечник, обеспечивается за счет нутриентов, поступающих из вышележащих отделов ЖКТ, которые не перевариваются собственными ферментативными системами и не всасываются в тонкой кишке. Эти вещества необходимы для обеспечения энергетических и пластических потребностей микроорганизмов. Способность использовать нутриенты для своей жизнедеятельности зависит от ферментативных систем различных бактерий.

В зависимости от этого условно выделяют бактерии с преимущественно сахаролитической активностью, основным энергетическим субстратом которых являются углеводы (характерно в основном для сапрофитной флоры), с преимущественной протеолитической активностью, использующих белки для энергетических целей (характерно для большинства представителей патогенной и условно-патогенной флоры), и смешанной активностью. Соответственно, преобладание в пище тех или иных нутриентов, нарушение их переваривания будет стимулировать рост различных микроорганизмов.

Углеводные нутриенты особенно необходимы для жизнедеятельности нормальной кишечной микрофлоры. Ранее эти компоненты пищи называли «балластными», предполагая, что они не имеют какого-либо существенного значения для макроорганизма, однако по мере изучения микробного метаболизма стало очевидно их значение не только для роста кишечной микрофлоры, но для здоровья человека в целом. Согласно современному определению, пребиотиками называют частично или полностью не перевариваемые компоненты пищи, которые избирательно стимулируют рост и/или метаболизм одной или нескольких групп микроорганизмов, обитающих в толстой кишке, обеспечивая нормальный состав кишечного микробиоценоза. Свои энергетические потребности микроорганизмы толстой кишки обеспечивают за счет анаэробного субстратного фосфорилирования, ключевым метаболитом которого является пировиноградная кислота (ПВК). ПВК образуется из глюкозы в процессе гликолиза. Далее, в результате восстановления ПВК, образуется от одной до четырех молекул аденозинтрифосфата (АТФ). Последний этап приведенных выше процессов обозначается как брожение, которое может идти различными путями с образованием различных метаболитов.

Гомоферментативное молочное брожение характеризуется преимущественным образованием молочной кислоты (до 90%) и характерно для лактобактерий и стрептококков толстой кишки. Гетероферментативное молочное брожение, при котором образуются и другие метаболиты (в том числе уксусная кислота), присуще бифидобактериям. Спиртовое брожение, ведущее к образованию углекислого газа и этанола, является побочным метаболическим эффектом у некоторых представителей Lactobacillus и Clostridium. Отдельные виды энтеробактерий (E. coli) и клостридий получают энергию в результате муравьинокислого, пропионового, маслянокислого, ацетонобутилового или гомоацетатного видов брожения.

В результате микробного метаболизма в толстой кишке образуются молочная кислота, короткоцепочечные жирные кислоты (С2 — уксусная; С3 — пропионовая; С4 — масляная/изомасляная; С5 — валериановая/изовалериановая; С6 — капроновая/изокапроновая), углекислый газ, водород, вода. Углекислый газ в большой степени преобразуется в ацетат, водород всасывается и выводится через легкие, а органические кислоты (в первую очередь жирные короткоцепочечные) утилизируются макроорганизмом. Нормальная микрофлора толстой кишки, перерабатывая не переваренные в тонкой кишке углеводы, производит короткоцепочечные жирные кислоты с минимальным количеством их изоформ. В то же время при нарушении микробиоценоза и увеличении доли протеолитической микрофлоры указанные жирные кислоты начинают синтезироваться из белков преимущественно в виде изоформ, что отрицательно сказывается на состоянии толстой кишки, с одной стороны, и может быть диагностическим маркером — с другой.

Помимо этого, различные представители сапрофитной флоры имеют свои потребности в определенных нутриентах, объясняющиеся особенностями их метаболизма. Так, бифидобактерии расщепляют моно-, ди-, олиго- и полисахариды, используя их как энергетический и пластический субстрат. При этом они могут ферментировать белки, в том числе и для энергетических целей; не требовательны к поступлению с пищей большинства витаминов, но нуждаются в пантотенатах.

Лактобактерии также используют различные углеводы для энергетических и пластических целей, однако плохо расщепляют белки и жиры, поэтому нуждаются в поступлении извне аминокислот, жирных кислот, а также витаминов.

Энтеробактерии расщепляют углеводы с образованием углекислого газа, водорода и органических кислот. При этом существуют лактозонегативные и лактозопозитивные штаммы. Также они могут утилизировать белки и жиры, поэтому мало нуждаются во внешнем поступлении аминокислот, жирных кислот и большинства витаминов.

Очевидно, что питание сапрофитной микрофлоры и ее нормальное функционирование принципиально зависит от поступления к ней не переваренных углеводов (ди-, олиго- и полисахаридов) для энергетических целей, а также белков, аминокислот, пуринов и пиримидинов, жиров, углеводов, витаминов и минералов — для пластического обмена. Залогом поступления к бактериям необходимых нутриентов является рациональное питание макроорганизма и нормальное течение пищеварительных процессов.

Хотя моносахариды могут легко утилизироваться микроорганизмами толстой кишки, к пребиотикам их не относят.

В нормальных условиях кишечная микрофлора не потребляет моносахариды, которые должны полностью всасываться в тонкой кишке. Пребиотики включают некоторые дисахариды, олигосахариды, полисахариды и достаточно гетерогенную группу соединений, в которой присутствуют и поли- и олигосахариды, которую обозначили как пищевые волокна. Из пребиотиков в женском молоке присутствует лактоза и олигосахариды.

Лактоза (молочный сахар) представляет собой дисахарид, состоящий из галактозы и глюкозы. В норме лактоза расщепляется лактазой тонкой кишки до мономеров, которые практически полностью всасываются в тонкой кишке. Лишь незначительное количество нерасщепленной лактозы у детей первых месяцев жизни попадает в толстую кишку, где утилизируется микрофлорой, обеспечивая ее становление. В то же время дефицит лактазы приводит к избытку лактозы в толстой кишке и значительному нарушению состава кишечной микрофлоры и осмотической диарее.

Лактулоза — дисахарид, состоящий из галактозы и фруктозы, в молоке (женском или коровьем) отсутствует, однако в небольших количествах может образовываться при нагревании молока до температуры кипения. Лактулоза не переваривается ферментами ЖКТ, ферментируется лакто- и бифидобактериями и служит им субстратом для энергетического и пластического обмена, за счет чего способствует их росту и нормализации состава микрофлоры, увеличению объема биомассы в содержимом кишечника, что определяет ее слабительный эффект. Помимо этого, показана антикандидозная активность лактулозы и ее угнетающий эффект на сальмонелл. Полученная синтетическим путем лактулоза (дюфалак) широко используется как эффективное слабительное средство, обладающее пребиотическими свойствами. Как пребиотик детям дюфалак назначается в низких дозах, не оказывающих слабительного эффекта (по 1,5–2,5 мл 2 раза в день в течение 3–6 нед).

Олигосахариды представляют собой линейные полимеры глюкозы и других моносахаров с общей длиной цепи не более 10. По химической структуре выделяют галакто-, фрукто-, фукозил-олигосахариды и др. Концентрация олигосахаридов в женском молоке относительно невелика, не более 12–14 г/л, однако их пребиотический эффект весьма значителен. Именно олигосахариды сегодня рассматриваются как основные пребиотики женского молока, обеспечивающие как становление нормальной микрофлоры кишечника ребенка, так и ее поддержание в дальнейшем. Важным является то обстоятельство, что олигосахариды присутствуют в значимых концентрациях только в женском молоке и отсутствуют, в частности, в коровьем. Следовательно, в состав адаптированных молочных смесей для искусственного вскармливания здоровых детей должны добавляться пребиотики (галакто- и фруктосахариды).

Полисахариды представляют собой длинноцепочечные углеводы в основном растительного происхождения. Инулин, содержащий фруктозу, в больших количествах присутствует в артишоках, клубнях и корнях георгинов и одуванчиков; утилизируется бифидо- и лактобактериями, способствует их росту. Помимо этого, инулин повышает всасывание кальция и влияет на метаболизм липидов, снижая риск развития атеросклероза.

Пищевые волокна — большая гетерогенная группа полисахаридов, наиболее известными из которых являются целлюлоза и гемицеллюлоза. Целлюлоза — неразветвленный полимер глюкозы, а гемицеллюлоза — полимер глюкозы, арабинозы, глюкуроновой кислоты и ее метилового эфира. Помимо функции субстрата для питания лакто- и бифидофлоры и опосредованно поставщика короткоцепочечных жирных кислот для колоноцитов, пищевые волокна оказывают и другие важные эффекты. Они обладают высокой адсорбционной способностью и удерживают воду, что приводит к повышению осмотического давления в полости кишки, увеличению объема фекалий, ускорения пассажа по кишечнику, что обусловливает слабительный эффект.

В средних количествах (1–1,9 г/100 г продукта) пищевые волокна содержатся в моркови, сладком перце, петрушке (в корне и зелени), редьке, репе, тыкве, дыне, черносливе, цитрусовых, бруснике, фасоли, гречневой, перловой крупе, «Геркулесе», ржаном хлебе.

Высокое содержание (2–3 г/100 г продукта) пищевых волокон характерно для чеснока, клюквы, красной и черной смородины, черноплодной рябины, ежевики, овсяной крупы, хлеба из белково-отрубной муки.

Наибольшее же их количество (более 3 г/100 г) содержится в укропе, кураге, клубнике, малине, чае (4,5 г/100 г), овсяной муке (7,7 г/100 г), пшеничных отрубях (8,2 г/100 г), сушеном шиповнике (10 г/100 г), жареном кофе в зернах (12,8 г/100 г), овсяных отрубях (14 г/100 г). Пищевые волокна отсутствуют в рафинированных продуктах.

Несмотря на очевидную значимость пребиотиков для питания микрофлоры, благополучия ЖКТ и всего организма в целом, в современных условиях отмечается дефицит пребиотиков в питании во всех возрастных группах. В частности, взрослый человек должен съедать в сутки примерно 20–35 г пищевых волокон, тогда как в реальных условиях европеец потребляет не более 13 г в сутки. Уменьшение доли естественного вскармливания у детей первого года жизни приводит к недостатку пребиотиков, содержащихся в женском молоке.

Таким образом, пребиотики обеспечивают благополучие микрофлоры толстой кишки, здоровье толстой кишки и являются необходимым фактором здоровья человека в связи с их существенными метаболическими эффектами. Преодоление дефицита пребиотиков в современных условиях связано с обеспечением рационального питания лиц всех возрастных категорий, начиная от новорожденных и кончая людьми преклонного возраста.

Литература

С. В. Бельмер, доктор медицинских наук, профессор
А. В. Малкоч, кандидат медицинских наук
РГМУ, Москва

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Кат. №НаименованиеТипЦена *Обыч.Сроч. **Заказать
09.32Креатининколич.220 руб.1 р.д.2-5 ч.