объясните что такое дрейф генов
Дрейф генов
Дрейф генов или генетико-автоматические процессы — явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами.
Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.
Первые работы по изучению случайных процессов в популяциях были проведены в начале 1930-х годов Сьюэлом Райтом в США, Роналдом Фишером в Англии, а также В. В. Лисовским, М. А. Кузнецовым, Н. П. Дубининым и Д. Д. Ромашовым в СССР. Понятие «дрейф генов» (англ. genetic drift ) было введено в оборот Райтом (1931), а синонимичное понятие «генетико-автоматические процессы в популяциях» — Дубининым и Ромашовым (1932). Впоследствии в мировой литературе (в том числе и в русскоязычной) закрепился термин С. Райта. [1]
Содержание
Дрейф генов на примере
Механизм дрейфа генов может быть продемонстрирован на небольшом примере. Представим очень большую колонию бактерий, находящуюся изолированно в капле раствора. Бактерии генетически идентичны за исключением одного гена с двумя аллелями A и B. Аллель A присутствует у одной половины бактерий, аллель B — у другой. Поэтому частота аллелей A и B равна 1/2. A и B — нейтральные аллели, они не влияют на выживаемость или размножение бактерий. Таким образом, все бактерии в колонии имеют одинаковые шансы на выживание и размножение.
Затем размер капли уменьшаем таким образом, чтобы питания хватало лишь для 4 бактерий. Все остальные умирают без размножения. Среди четырёх выживших возможно 16 комбинаций для аллелей A и B:
Вероятность каждой из комбинаций
где 1/2 (вероятность аллеля A или B для каждой выжившей бактерии) перемножается 4 раза (общий размер результирующей популяции выживших бактерий)
Если сгруппировать варианты по числу аллелей, то получится следующая таблица:
A | B | Количество вариантов | Вероятность |
4 | 0 | 1 | 1/16 |
3 | 1 | 4 | 4/16 |
2 | 2 | 6 | 6/16 |
1 | 3 | 4 | 4/16 |
0 | 4 | 1 | 1/16 |
Как видно из таблицы, в шести вариантах из 16 в колонии будет одинаковое количество аллелей A и B. Вероятность такого события 6/16. Вероятность всех прочих вариантов, где количество аллелей A и B неодинаково несколько выше и составляет 10/16.
Дрейф генов происходит при изменении частот аллелей в популяции из-за случайных событий. В данном примере популяция бактерий сократилась до 4 выживших (эффект бутылочного горлышка). Сначала колония имела одинаковые частоты аллелей A и B, но шансы, что частоты изменятся (колония подвергнется дрейфу генов) выше, чем шансы на сохранение оригинальной частоты аллелей. Также существует высокая вероятность (2/16), что в результате дрейфа генов один аллель будет утрачен полностью.
Экспериментальное доказательство С. Райта
С. Райт экспериментально доказал, что в маленьких популяциях частота мутантного аллеля меняется быстро и случайным образом. Его опыт был прост: в пробирки с кормом он посадил по две самки и по два самца мух дрозофил, гетерозиготных по гену А (их генотип можно записать Аа). В этих искусственно созданных популяциях концентрация нормального (А) и мутационного (а) аллелей составила 50 %. Через несколько поколений оказалось, что в некоторых популяциях все особи стали гомозиготными по мутантному аллелю (а), в других популяциях он был вовсе утрачен, и, наконец, часть популяций содержала как нормальный, так и мутантный аллель. Важно подчеркнуть, что, несмотря на снижение жизнеспособности мутантных особей и, следовательно, вопреки естественному отбору, в некоторых популяциях мутантный аллель полностью вытеснил нормальный. Это и есть результат случайного процесса — дрейфа генов.
Дрейф генов. Причины. Примеры.
В прошлом дрейф генов расценивался как один из самых незначительных факторов эволюции, но проведённые во второй половине XX века исследования показали, что его роль недооценивалась. Современные учёные считают, что генетический дрейф действует на популяцию одновременно с естественным отбором. При этом существует прямая зависимость между процессом дрейфа генов и численностью популяции – чем численность ниже, тем эффект, оказываемый генетическим дрейфом, более заметен и ярко выражен. Но всё это действует только до определённого предела, и, в случае резкого сокращения численности популяции до минимального значения (так называемое бутылочное горлышко) последствия будут непредсказуемы, так как в таких условиях шансы на выживание у каждого отдельно взятого организма будут случайными.
Что такое дрейф генов
Это случайные изменения частот аллелей и генотипов, происходящие в небольшой полиморфной популяции при смене поколений. Такие случайные изменения приводят к двум характерным последствиям: сначала к флуктуациям частоты аллеля из поколения в поколение, а в конце концов к полному закреплению или элиминации данного аллеля. Влияние дрейфа генов на изменение частот аллелей в данной популяции зависит прежде всего от её размеров. Также этот процесс иногда называют эффектом Райта или генетико-автоматическим процессом. Также дрейф генов может приводить к следующим последствиям:
Читайте также:
Основные направления эволюции: ароморфоз, адаптация, дегенерация
Формы естественного отбора
Формы искусственного отбора
Основные причины, приводящие к дрейфу генов
Популяционные волны и дрейф генов
Для начала нужно вспомнить определение популяционных волн. Это периодические или непериодические колебания численности популяции у разных организмов – животных, растений, даже микроорганизмов. Факторы, влияющие на популяционные волны, могут быть самыми разными: сезонными (приход зимы, наступление засухи) и непериодическими (природные катастрофы, например, извержение вулкана). Также при освоении каким-либо видов животных или растений новых территорий может наблюдаться резкий рост численности популяции. Во всех вышеперечисленных случаях из-за дрейфа генов частоты некоторых аллелей могут значительно изменяться. При резком уменьшении численности популяции (например, в результате сокращения кормовых ресурсов, пожара и т. д.) остаться в живых могут особи с редкими генотипами. Если в дальнейшем популяция восстановится за счёт этих особей, то частоты сохранившихся генотипов в генофонде популяции возрастут.
Правление Мстислава Великого кратко. Биография, итоги.
15 интересных фактов о фиалках
Дрейф генов как фактор эволюции
Благодаря дрейфу частоты аллелей могут случайно меняться в локальных популяциях, пока они не достигнут точки равновесия – утери одного аллеля и фиксации другого, причём разных популяциях гены дрейфуют независимо. Соответственно, результаты генетического дрейфа оказываются разными в разных популяциях – в одних фиксируется один набор аллелей, в других – другой. Таким образом, дрейф генов ведёт, с одной стороны, к уменьшению генетического разнообразия внутри популяций, а с другой стороны — к увеличению различий между популяциями, к их дивергенции по ряду признаков. Дивергенция, в свою очередь, может служить основой для видообразования. Это отвечает на вопрос, почему дрейф генов считают одним из факторов эволюции. Он действует наряду с естественным отбором, мутационным процессом, комбинативной изменчивостью и изоляцией, которые также являются факторами эволюции.
Пример дрейфа генов
Представьте себе небольшую популяцию животных или растений, в которой, к примеру, у 3% особей присутствуют какие-то генетические отличия. Если эти 3% погибнут, что не исключено, их гены исчезнут из популяции. Но если их отличие делают их более приспособленными (или если им просто повезёт, как, например, в случае эффекта бутылочного горлышка), гены этих 3% могут закрепиться в дальнейшей популяции. Другой пример: ареал популяции постепенно расширяется, и на новые территории попадают особи, отличающиеся от сородичей генами. Просто потому, что они попали на новые, пригодные для освоения территории, первыми, у них больше шансов размножиться и передать свои гены дальше – это называется эффектом основателя. Современные учёные полагают, что многообразие видов на Земле, в частности, в морях и океанах, в какой-то мере обусловлено именно эффектом основателя.
Оцените статью и поделитесь ей в соцсетях!
Средний рейтинг: 4.7 / 5. Количество оценок: 26
Факторы эволюции
Мутационный процесс
Большинство мутаций возникает спонтанно и вредит организму. Часть мутаций являются рецессивными, поэтому не проявляются и передаются многим поколениям, накапливаясь в генофонде популяции.
Популяционные волны
Особенно весомым фактором эволюции популяционные волны выступают в небольших популяциях. Их участие в эволюционном процессе основано на явлении дрейфа генов.
Такое повышение встречаемости аллелей возникает в результате близкородственных браков: проявляются редкие гены, которые часто приводят к заболеваниям.
Изоляция
Изоляцией называют невозможность или затруднение свободного скрещивания между особями одного вида. Вследствие этого, генофонды двух популяций становятся независимыми друг от друга. Внутри каждой популяции происходит генотипическая дифференцировка из-за их разобщенности.
Естественный отбор
Иногда безобидные животные, в результате приспособления к внешней среде, приобретают окраску тела, напоминающую окраску опасных хищных животных. Примером может послужить внешнее сходство мухи из семейства журчалок с осой.
Многие хорошо защищенные, ядовитые виды в ходе естественного отбора получили яркую, так называемую предупреждающую окраску. Эта окраска предупреждает хищников об опасности. Если хищник съест такое ядовитое животное, то рискует получить тяжелую интоксикацию и погибнуть.
Необходимо осознавать относительность приспособленности к окружающей среде. Она помогает выживать лишь при определенных условиях, и, если условия меняются, то окраска может оказаться вовсе не полезной, но даже и вредной. К примеру, при таянии снега заяц-беляк становится еще более заметен на голой земле.
Самая ожесточенная борьба. Происходит между особями, принадлежащими к одному виду. Благодаря внутривидовой борьбе происходит половой отбор: к размножению редко допускаются неприспособленные особи, род продолжают лучшие из лучших.
В изменяющихся условиях внешней среды выживают наиболее приспособленные особи. Примером такой борьбы являются сезонные миграции птиц, зимняя спячка у животных.
Формы естественного отбора
Открыт И.И. Шмальгаузеном. Стабилизирующий отбор приводит к сужению нормы реакции, устраняя отклонения от нее. В результате преимущество получают особи, обладающие средней степенью признака, который характерен для вида или популяции. Этот отбор действует при стабильных (неизменных) условиях среды.
Примером действия стабилизирующего отбора может послужить буря: во время бури чаще всего выживают птицы со средней длиной крыла, тогда как особи с слишком короткими, или слишком длинными крыльями погибают.
Движущий естественный отбор приводит к смещению нормы реакции, в результате чего изменяется среднее значение признака. Этот вид отбора действует при изменяющихся условиях среды.
Направлен на сохранение в популяции крайних значений признаков, не благоприятствует среднему промежуточному значению признака. В результате в популяции сохраняется более чем одно значение признака.
Типичным примером является появление в луговых сообществах раноцветущих и поздноцветущих растений. В результате летних покосов, особи со средним значением признака, у которых цветение приходит на середину лета, постепенно исчезают из популяции растений. Выживают и размножаются только те растения, у которых цветение происходит до или после покосов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Объясните что такое дрейф генов! Было бы хорошо, если бы объяснили простым языком и показали на примере:)))
Дрейф ге́нов или гене́тико-автомати́ческие проце́ссы — явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами.
Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.
Мутация, в зависимости от того, где она произошла, может иметь самые разные последствия.
Если мутация нарушит активное ядро гемоглобина или те участки молекулы, которые отвечают за его пространственную структуру, гемоглобин потеряет способность нормально функционировать, и детёныш погибнет.
Так вот, генный дрейф — это множество мутаций, которые делают гены у различных особей различными, но не влияют на нормальное функционирование организма.
Например, два любых человека (даже если они оба абсолютно здоровы) в среднем генетически отличаются на 0,1%. Это и есть генный дрейф.
Не знаю, откуда такие познания у предыдущего докладчика, но из глубин памяти всплывает следующая картинка.
То есть, генов, отвечающих за зелёную окраску, в популяции стало гораздо меньше чисто по статистическим причинам. Это явление и носит название «дрейф генов», насколько я понимаю.
Дрейф генов
Частота генов в популяции может варьировать под действием случайных факторов.
Закон Харди—Вайнберга утверждает, что в теоретической идеальной популяции распределение генов будет оставаться постоянным из поколения в поколение. Так, в популяции растений количество «внуков» с генами высокорослости будет ровно таким же, сколько было родителей с этим геном. Но в реальных популяциях дело обстоит иначе. Из-за случайных событий частота распределения генов из поколения в поколение несколько варьирует — это явление называется дрейфом генов.
Приведем простой пример. Представьте себе группу растений, населяющих изолированную горную долину. Популяция состоит из 100 взрослых растений, и лишь 2% растений в популяции содержат особенный вариант гена (например, затрагивающий окраску цветка), т. е. в рассматриваемой нами популяции этот ген имеется лишь у двух растений. Вполне возможно, что небольшое происшествие (например, наводнение или падение дерева) приведет к гибели обоих растений, и тогда этот особенный вариант гена (или, пользуясь научной терминологией, этот аллель) попросту исчезнет из популяции. А значит, будущие поколения будут уже не такими, как рассматриваемое нами.
Существуют и другие примеры дрейфа генов. Рассмотрим крупную размножающуюся популяцию со строго определенным распределением аллелей. Представим, что по той или иной причине часть этой популяции отделяется и начинает формировать собственное сообщество. Распределение генов в субпопуляции может быть нехарактерным для более широкой группы, но с этого момента и впредь в субпопуляции будет наблюдаться именно такое, нехарактерное для нее распределение. Это явление называется эффектом основателя.
Дрейф генов сходного типа можно наблюдать и на примере явления с запоминающимся названием эффект бутылочного горлышка. Если по какой-либо причине численность популяции резко уменьшится — под воздействием сил, не связанных с естественным отбором (например, в случае необычной засухи или непродолжительного увеличения численности хищников), быстро появившихся и затем исчезнувших, — то результатом будет случайное устранение большого числа индивидуумов. Как и в случае эффекта основателя, к тому времени, когда популяция вновь будет переживать расцвет, в ней будут гены, характерные для случайно выживших индивидуумов, а вовсе не для исходной популяции.
В конце XIX века в результате охотничьего промысла были почти полностью истреблены северные морские слоны. Сегодня в популяции этих животных (восстановившей свою численность) наблюдается неожиданно маленькое количество генетических вариантов. Антропологи полагают, что первые современные люди пережили эффект бутылочного горлышка около 100 000 лет назад, и объясняют этим генетическое сходство людей между собой. Даже у представителей кланов гориллы, обитающих в одном африканском лесу, больше генетических вариантов, чем у всех человеческих существ на планете.