что такое гомология зародышевых листков
Стадии развития зародыша
Вопрос 2.
В процессе дробления клетки делятся путем митоза. Митотическое деление при дроблении значительно отличается от размножения клеток взрослого организма: митотический цикл очень короткий, клетки не дифференцируются — в них не используется наследственная информация. Кроме этого, при дроблении цитоплазма клеток не перемешивается и не перемещается; отсутствует рост клеток.
Рис. 2.Типы яиц и соответствующие им типы дробления
Независимо от особенностей дробления оплодотворенных яйцеклеток у разных животных, обусловленных различиями в количестве и характере распределения желтка в цитоплазме, этому периоду эмбрионального развития свойственны следующие общие черты.
1. В результате дробления образуется многоклеточный зародыш — бластула и накапливается клеточный материал для дальнейшего развития.
2. Все клетки в бластуле имеют диплоидный набор хромосом, одинаковы по строению и отличаются друг от друга главным образом по количеству желтка, т. е. клетки бластулы не дифференцированы.
3. Характерная особенность дробления — очень короткий митотический цикл по сравнению с его продолжительностью у взрослых животных.
4. В период дробления интенсивно синтезируются ДНК и белки и отсутствует синтез РНК. Генетическая информация, содержащаяся в ядрах бластомеров, не используется.
5. Во время дробления цитоплазма не перемещается.
Вопрос 4.
Зародышевые листки — это отдельные пласты клеток, занимающие определенное положение в зародыше и дающие начало соответствующим тканям и органам. Они гомологичны у всех животных, т. е. вне зависимости от систематического положения животного дают развитие одним и тем же органам и тканям. Гомология зародышевых листков подавляющего большинства животных — одно из доказательств единства животного мира. Зародышевые листки образуются в результате Дифференциации сходных между собой сравнительно однородных клеток бластулы.
Вопрос 5.
Дифференцировка клеток – это процесс, в результате которого клетка становится специализированной, то есть приобретает химические, морфологические и функциональные особенности. Примером может служить дифференцировка клеток эпидермиса кожи человека, при которой в клетках, перемещающихся из базального в шиповатый и затем в другие, более поверхностные слои, происходит накопление кератогиалина, превращающегося в клетках блестящего слоя в элеидин, а затем в роговом слое – в кератин. При этом изменяется форма клеток, строение клеточных мембран и набор органоидов. Дифференцируется не одна клетка, а группа сходных клеток. В организме человека насчитывается около 100 различных типов клеток. Фибробласты синтезируют коллаген, миобласты – миозин, клетки эпителия пищеварительного тракта пепсин и трипсин и т.д.
Первые химические и морфологические различия между клетками обнаруживаются во время гаструляции. Процесс, в результате которого отдельные ткани в ходе дифференцировки приобретают характерный для них вид, называется гистогенезом. Дифференцировка клеток, гистогенез и органогенез совершаются в совокупности, причем в определенных участках зародыша и в определенное время. Это очень важно, потому что указывает на координированность и интегрированность эмбрионального развития. Возникает вопрос, каким образом клетки, обладающие одинаковым генотипом, дифференцируются и участвуют в гисто- и органогенезе в необходимых местах и в определенные сроки соответственно целостному “образу” данного вида организма. В настоящее время общепризнанной точкой зрения является точка зрения Т. Моргана, который опираясь на хромосомную теорию наследственности, предположил, что дифференцировка клеток в процессе онтогенеза является результатом последовательных реципрокных (взаимных) влияний цитоплазмы и меняющихся продуктов активности ядерных генов. Прозвучала идея о дифференциальной экспрессии генов как основного механизма цитодифференцировки.
В настоящее время собрано много доказательств того, что в большинстве случаев соматические клетки организмов несут полный диплоидный набор хромосом, а генетические потенции ядер соматических клеток также полностью сохраняются, т.е. гены не утрачивают потенциальной функциональной активности. Проведенные цитогенетическим методом исследования кариотипов различных соматических клеток показали почти полную их идентичность. Цитофотометрическим способом установлено, что количество ДНК в них не уменьшается, а методом молекулярной гибридизации показано, что клетки разных тканей идентичны по нуклеотидным последовательностям.
Наследственный материал соматических клеток способен сохраняться полноценным не только в количественном, но и в функциональном отношении. Следовательно, цитодифференцировка не является следствием недостаточности наследственного материала. Главная идея заключается в избирательной проявляемости генов в признак, т.е. в дифференциальной экспрессии генов.
Экспрессия гена в признак – сложный этапный процесс, который изучается в основном по продуктам активности гена, с помощью электронного микроскопа или по результатам развития особи.
Вопрос 6.
У разных видов животных одни и те же зародышевые листки дают одни и те же органы и ткани. Это значит, что зародышевые листки гомологичны. Гомология зародышевых листков подавляющего большинства животных — одно из доказательств единства животного мира.
Актиния нематостелла поставила под сомнение классические представления о гомологии зародышевых листков
Рис. 1. Слева: зародышевые листки трехслойных животных на стадии гаструлы (голубым показана эктодерма, желтым — энтодерма, розовым — мезодерма). Справа: три теории строения зародыша двуслойного животного. Сначала считалось, что у двуслойных животных есть экто- и энтодерма, соответствующие аналогичным листкам трехслойных (левая схема). Со временем выяснилось, что энтодерма двуслойных частично берет на себя функции мезодермы и что последняя, скорее всего, из нее эволюционно и развилась (в середине). Энтодерму двуслойных стали называть мезэнтодермой (показана оранжевым). В новой теории, которая предложена в обсуждаемой работе, только часть эктодермы двуслойных соответствует эктодерме трехслойных, другая часть, «глоточная эктодерма», соответствует энтодерме трехслойных, а энтодерма двуслойных — мезодерме трехслойных (правая схема). Источник: T. Hashimshony, 2017. Cnidarians layer up
Во время эмбрионального развития зародыш принято делить на зародышевые листки. У двуслойных животных их два — эктодерма и энтодерма, у трехслойных есть третий зародышевый листок — мезодерма. Ранее считалось что эктодерма двуслойных животных соответствует эктодерме трехслойных, а из энтодермы двуслойных эволюционно развились энто- и мезодерма трехслойных. Исследование того, как у актинии нематостеллы развиваются ткани из зародышевых листков, показало, что энтодерма двуслойных действительно родственна мезодерме, однако с энтодермой трехслойных она не имеет почти ничего общего. Функции энтодермы трехслойных животных у двуслойных выполняет небольшой участок эктодермы, «глоточная эктодерма».
Во время развития эмбрионы многоклеточных проходят через несколько консервативных стадий, которые совпадают или почти совпадают у всех животных (Смысл консервативной стадии зародышевого развития начинает проясняться, «Элементы», 31.03.2017). Между этими стадиями изменчивость повышена, то есть одинаковые по строению зародыши разных видов часто получаются разными путями (Ю. А. Краус, А. В. Марков, 2016. Гаструляция книдарий: ключ к пониманию филогенеза или хаос вторичных модификаций?).
Рассмотрим «классический» вариант. Сначала яйцо много раз делится, из клеток образуется однослойная сфера с полостью внутри — бластула. Затем с одной из сторон сферы происходит впячивание части поверхности внутрь, образуется двуслойный шарик с новой полостью — гаструла. Именно на этом этапе наблюдается разделение на так называемые зародышевые листки. Внешний слой клеток с этого момента именуется эктодермой, а внутренний — энтодермой. Всех настоящих многоклеточных животных (Eumetazoa) по количеству зародышевых листков подразделяют на двуслойных (кораллы с медузами и гребневики) и трехслойных (все остальные животные, включая нас с вами). У последних во время гаструляции часть клеток выселяется в пространство между экто- и энтодермой и формирует третий, промежуточный слой — мезодерму (рис. 2).
Рис. 2. Ранние стадии эмбрионального развития. Иллюстрация из учебника В. И. Сивоглазова «Общая биология»
Каждый из этих слоев играет свою особенную роль в развитии зародыша. Из эктодермы формируются покровы, нервная система и органы чувств, из энтодермы — легкие, кишечник, пищеварительные железы и др., из мезодермы — скелет, мышцы, кровеносные сосуды и др. Хотя у разных животных одни и те же структуры имеют тенденцию формироваться из одних и тех же зародышевых листков, далеко не всё так просто. Относительно недавно появилось предложение выделить еще один, четвертый зародышевый листок. Он есть только у хордовых, формируется во время нейруляции и «перетягивает» на себя ряд функций других зародышевых листков («Четвертый зародышевый листок» позвоночных зародился у низших хордовых, «Элементы», 04.02.2015). Кроме того, граница между зародышевыми листками не всегда проходит так четко, как в рассмотренном «классическом» варианте. А главное, не для всех животных непосредственно прослежена судьба каждого из слоев.
Уже давно идут споры о том, являются ли в действительности двуслойные животные двуслойными: то тут, то там исследователи находят у них признаки наличия третьего слоя (см., например: K. Seipel, V. Schmid, 2006. Mesodermal anatomies in cnidarian polyps and medusae). Речь всякий раз идет о мезодерме, наличие же внешнего и внутреннего зародышевых листков у этих животных сомнению не подлежит. До сих пор не вызывало серьезных сомнений и соответствие этих двух листков экто- и энтодерме трехслойных животных. Авторы работы, опубликованной недавно в журнале Nature Ecology & Evolution, решили пересмотреть устоявшиеся представления.
Объектом своего исследования они выбрали двуслойный коралловый полип — актинию нематостеллу (Nematostella vectensis), уже ставшую любимицей ученых, занимающихся эволюционной биологией развития. Тело взрослой актинии состоит из двух слоев, формирующих как бы мешок с единственным отверстием — ртом (рис. 3). Внутри этого мешка находится простая гастральная полость, где удерживается еда во время пищеварения. Вдоль тела проходят восемь так называемых септ (выростов стенки тела), вдающихся в гастральную полость и частично подразделяющих ее на зоны. Выделяют также небольшую глотку — зону, где все септы соединены краями друг с другом и со ртом.
Рис. 3. Развитие актинии. Слева — гаструла и личинка (планула), в центре — полип, справа — поперечные срезы взрослого полипа через глотку и ниже. Обозначения: com. и incom. mes. — разные по строению септы; sep. fil. — обсуждаемые в тексте краевые участки септ; ph. ecto. — глоточная эктодерма; ph. endo. — глоточная энтодерма; bw endo. — энтодерма стенки тела. Цвета те же, что и на рис. 1. Иллюстрация из обсуждаемой статьи в Nature Ecology & Evolution
Считается, что из эктодермы формируется внешний слой актинии — эпидермис, а из энтодермы — внутренний, гастродермис. Авторы обсуждаемой работы решили проследить, какие структуры формируются из какого зародышевого слоя. На стадии бластулы судьба отдельных клеток еще не определена и можно без последствий переставлять их местами, даже менять родные клетки на клетки другого эмбриона того же вида. Этим ученые и воспользовались. Они подсаживали в разные участки развивающихся бластул флуоресцирующие клетки других зародышей. Затем, на более поздних стадиях, смотрели, где оказывались флуоресцентные метки. Развитие шло нормальным путем, а метки сохранялись только в клетках-потомках подсаженных тканей (рис. 4). По положению этой метки в гаструле и потом во взрослом организме можно было говорить о том, какие структуры развились из каких участков зародыша.
Рис. 4. Срезы нематостеллы с подсаженными мечеными тканями (желтые пятна на снимках и оранжевые — на схемах) через глотку (c, f) и через септу (d, g). Если на стадии гаструлы трансплантат был в «глоточной эктодерме», то у молодой актинии флуоресценция наблюдается в глотке и в краевых участках септ (c, d); если же метка была в энтодерме, то позже она обнаруживается в энтодерме стенки тела и основаниях септ (f, g). На снимках голубым окрашены ядра клеток, сиреневым — границы клеток и мышцы (в септе). Буквенные обозначения те же, что и на рис. 3. Иллюстрация из обсуждаемой статьи в Nature Ecology & Evolution
Оказалось, что глотка и краевые участки септ нематостеллы имеют эктодермальное, а не энтодермальное, как считалось ранее, происхождение. Эти структуры являются частью гастродермиса, богатого железистыми клетками, в том числе и железами, выделяющими секрет в гастральную полость для пищеварения. У трехслойных животных такие железы имеют всегда энтодермальное происхождение. Поэтому исследователи задались вопросом: каково происхождение этих железистых клеток у актинии? Не развиваются ли некоторые из них вместе с глоткой и краями септ из эктодермы?
Ученые посмотрели, где идет экспрессия генов пищеварительных ферментов. Вяснилось, что все исследованные гены работают исключительно в железах эктодермального происхождения — только гены муцинов, основного компонента секрета любых желез, работают в производных как эктодермы, так и энтодермы. Синтез инсулиноподобных белков тоже оказался приурочен к эктодерме.
Все эти железы, глотка и краевые участки септ развились из единого участка эктодермы, который ученые назвали «глоточная эктодерма». Этот участок эктодермы может быть выделен и по наличию транскрипционного фактора foxA (см. FOX proteins), характерного для энтодермы трехслойных. 13 из 15 ортологов генов поджелудочной железы экспрессируются исключительно в этом участке и его производных. Из двух оставшихся ортологов один экспрессируется как в «глоточной эктодерме», так и в одной клетке неглоточной эктодермы, а другой ген — только в энтодерме.
Таким образом, у двуслойного организма был найден участок эктодермы, производные которого по набору типов клеток и транскрипционным факторам очень схожи с производными энтодермы трехслойных организмов. Ранее полагалось, что энтодерма (мезэнтодерма) полипов функционально заменяет энтодерму и мезодерму трехслойных животных. Теперь же получается, что функции энтодермы выполняет участок эктодермы полипа. Что же остается энтодерме?
Ученые накормили полипов флуоресцирующей пищей и обнаружили образование меченых (светящихся) жировых капель в производных энтодермы. Там же обнаружилась и транскрипция лизосомальной липазы (lysosomal lipase), инсулинового рецептора и ядерного рецептора гормона связывания жирных кислот (hnf4). У трехслойных животных всасывание и хранение питательных веществ осуществляют производные мезодермы. Расщеплением и связыванием же занимаются как мезодерма, так и энтодерма.
Локализация экспрессии генов, характерных для мезодермы, подтвердила наличие сходства между энтодермой двуслойных и мезодермой трехслойных. Ортологи генов брюшной внутренностной мезодермы, скелетных мышц, шести из семи транскрипционных факторов сердечных мышц и почти всех генов сомитогенеза у нематостеллы экспрессируются именно в энтодерме.
Долгое время считалось что эктодерма двуслойных животных гомологична эктодерме трехслойных, а энтодерма двуслойных — энто- и мезодерме трехслойных. В данной работе выдвигается альтернативная гипотеза родства зародышевых листков. Во-первых, показано, что у нематостеллы во время эмбрионального развития имеются три отдельных, локально ограниченных участка, соответствующих экто-, энто- и мезодерме трехслойных, однако организованы они в два слоя. Во-вторых, часть эктодермы выполняет функции энтодермы трехслойных, а энтодерма выполняет функции мезодермы. Таким образом, при гаструляции нематостеллы путем впячивания происходит разделение не на эктодерму и энтодерму, а, скорее, на эктодерму и мезодерму. А промежуточный участок, который относили всегда к эктодерме, — «глоточная эктодерма» — является на самом деле энтодермой.
Источник: Patrick R. H. Steinmetz, Andy Aman, Johanna E. M. Kraus & Ulrich Technau. Gut-like ectodermal tissue in a sea anemone challenges germ layer homology // Nature Ecology & Evolution. 2017. V. 1. P. 1535–1542. DOI: 10.1038/s41559-017-0285-5.
Что такое гомология зародышевых листков. срочно!!
Положительное: Компоненты биоценоза (звено в цепи питания), морские корненожки, имеющие раковину образуют осадочные породы; объект изучения признаков животных и растений
Отрицательное: корненожки- дизентерия(Дизентерийная амеба), малярия ( малярийный плазмодий);
инфузории- балантидий (заболевание, похожее на дизентерению, только им может заразиться и человек, а постоянный хозяин(свинья) не получает вреда
Кровеносная система включает:
сердце; вены; артерии; капилляры.
Причины движения крови в сосудах:
сокращение миокарда;сокращение гладкомышечного слоя сосудов;разница давления крови в артериях и венах.
Большой круг кровообращения
картинка 2.
Схема телесного круга кровообращения, где: 1. Лж — левый желудочек.
3. Арт — артерии туловища и конечностей.
5. ПВ — полые вены (правая и левая).
6. ПП — правое предсердие.
Дегенерация — процесс резкого упрощения организации, связанного с исчезновением органов и функций, а также целых систем органов.
Согласно Григорию КЛИМОВУ – первому автору, откровенно описавшему процесс вырождения – дегенерация состоит из половых извращений и психических болезней. Тем не менее, эти две составляющие являются всего лишь механизмами, средствами, при помощи которых дегенерация удаляет тот или иной Род.
Одно из самых коварных свойств вырождения заключается в том, что процесс вырождения изначально незаметен или практически незаметен на внешнем плане. По сравнению с продолжительностью человеческой жизни вырождение нарастает медленно (по крайней мере, так было до недавнего времени, когда в разы ускорились все процессы).
Более того – вырождение изначально поражает душу человека, затем наследственную информацию и только потом – тело. Поэтому, закрывая глаза на происходящее внутри и ретушируя проявляющиеся внешние признаки, легко можно довести дегенерацию в Роду до критической точки, просто не обращая внимания на происходящее.
Внешние признаки дегенерации хорошо известны тому, кто столкнулся данной темой, поэтому здесь нет смысла на них останавливаться. Главное – внешние, проявляющие в физическом теле признаки вырождения, являются следствиями духовного, душевного вырождения – именно поэтому до сих пор не найдено лекарство от вырождения, хотя последние полвека ведутся попытки найти «корень» дегенерации даже на генном уровне.
Данная идея очевидна – информация, заложенная в генах, управляет строительством тела и протекающими в нём процессами. Тем не менее, информация, заложенная в генах, является выражением информации, заложенной на более «высоких» уровняхо, поэтому она вряд ли подлежит корректировке на генном уровне.
Дегенерация – болезнь души, сознания, поэтому попытки исцелить тело без исцеления в душе и в сознании бессмысленны. Современная медицина сделала огромные шаги в лечении и ретушировании следствий вырождения, но вопрос избавления от корней проблемы, а не от следствий, в рамках одной медицины на данный момент не решён и вряд ли может быть решён.
Что такое зародышевые листки?
Задание №8 на ЕГЭ по биологии традиционно вызывает значительные затруднения у участников экзамена. Оно относится к повышенному уровню сложности и проверяет знания по разделу «Организм как биологическая система». В одной из линий это задание посвящается теме «Зародышевые листки» и требует не только теоретический знаний, но и умения работать с рисунками. Сегодня мы узнаем, как правильно отвечать на него и не запутаться при определении органов и тканей, которые образуются из зародышевых листков.
Что такое зародышевые листки?
Оплодотворенная яйцеклетка вначале делится на две клетки, которые, в свою очередь, делятся еще на две клетки и так далее до седьмого деления, когда образуется 128 клеток, образующих бластулу с бластоцелью — полостью внутри зародыша, окруженной бластодермой.
На следующем этапе формируются зародышевые листки, из которых затем разовьются специализированные органы и ткани организма. Эти слои носят следующие названия:
Как различать зародышевые листки и их функции?
Названия зародышевых листков похожи, поэтому их часто путают, вследствие чего возникают ошибки при определении тканей или органов, образующихся из конкретного пласта. Чтобы запомнить их «расположение», можно воспользоваться аналогиями из других наук или сфер человеческой деятельности:
Есть и более простой метод распознавания зародышевых листков — алфавитный. Начинаем изучать слова «снаружи» и выясняем, что вторая буква в слове «эКтодерма» — «К». За ней идет буква «М» от «Мезодермы» и только потом буква «Н» от «эНтодермы». Точно в алфавитном порядке снаружи внутрь.
Примеры задания №8 из ЕГЭ
Освоим теорию, вы сможете без труда разобраться с практикой. В демоверсии 2021 года задание №8 посвящается определению соответствия между зародышевыми листками и структурами. В условии дан рисунок, на котором обозначены номера (не названия, что затрудняет запоминание) зародышевых листков. Участнику ЕГЭ по биологии нужно определить, какая структура формируется из какого пласта и занести соответствующий номер в строку ответа.
В нашем примере на рисунке обозначены: №1 — внешний (эктодерма) и №2 — средний (мезодерма) листки. Вспомнив, что из наружного листка образуются наружные структуры, мы можем сделать вывод, что к №1 относятся:
Остальные структуры относятся к №2 — то есть к мезодерме, которая «отвечает» за формирование «средних» тканей, соединительных, мышечных, а также сердечно-сосудистой (включая кровь), мочевыделительной, половой системы, скелета и почек. В результате варианты Б, В и Г необходимо отнести к мезодерме. Теперь вы знаете, как различать зародышевые листки и какие структуры из них образуются, поэтому можете без труда ответить на тематическое задание №8 и из ЕГЭ 2021 по биологии, получив 2 балла в свою «копилку».
Доказательства эволюции
Пути эволюции
В своих работах советский ученый Северцов А.Н. выделил понятия биологического прогресса и регресса.
Ароморфоз представляет собой прогрессивное эволюционное преобразование, повышающее уровень организации организмов. В результате ароморфоза становится возможным освоение новых, ранее недоступных для жизни, территорий. К примеру, теплокровность птиц позволила им заселить места с холодным климатом.
Идиоадаптация подразумевает незначительные, частные изменения в строении и функциях организма, которые помогают приспособиться к условиям среды обитания. Идиоадаптации существенно не повышают уровень организации.
Общей дегенерацией называют упрощение организации, которое заключается в утрате отдельных органов и систем органов. У многих этот пункт вызывает внутреннее противоречие: как общая дегенерация может относиться к биологическому прогрессу?
У многих паразитов отсутствуют различные органы, к примеру, у ленточных червей нет пищеварительной системы. А зачем она им, когда пища в кишке, где они обитают, уже переварена и расщеплена организмом хозяина?
Биологический регресс характеризуется признаками, противоположными биологическому прогрессу:
Главная причина биологического регресса в том, что скорость эволюции вида отстает от скорости изменения внешней среды, эволюции других видов: это несоответствие снижает приспособленность организмов. Часто деятельность человека молниеносно меняет окружающую среду: далеко не все виды могут приспособиться к этому, происходит вымирание.
Сравнительно-анатомические доказательства эволюции
В строении нынешних животных можно найти признаки древних предковых форм, которые также свидетельствуют об эволюции. Сейчас мы обсудим рудименты и атавизмы.
У человека к рудиментарным органам относятся: зубы мудрости, копчик, ушные мышцы, аппендикс (червеобразный отросток), третье веко (эпикантус).
У человека атавизмами могут являться хвост, волосатое тело, добавочные молочные железы, незаращение межпредсердной перегородки.
Переходные формы
Такими формами являются, к примеру, утконос и ехидна из класса млекопитающих. При многих признаках млекопитающих, они откладывают яйца, тем самым подтверждают родство млекопитающих с пресмыкающимися.
Эмбриологические доказательства
Немецкие ученые Ф. Мюллер и Э. Геккель во второй половине XIX века сформулировали биогенетический закон, гласящий, что онтогенез (индивидуальное развитие) каждой особи есть краткое и быстрое повторение филогенеза (исторического развития вида).
Биогенетический закон Мюллера-Геккеля объясняет повторение этапов (на стадии зародыша), которые были свойственны нашим далеким предкам. Таким образом, мы проходим их этапы, но, не останавливаясь на них, двигаемся дальше к более совершенным этапам.
Карл Бэр сформулировал закон зародышевого сходства, который гласит, что на ранних стадиях развития зародыши позвоночных животных настолько похожи друг на друга, что практически неразличимы между собой. Это также указывает и подтверждает единство происхождения животного мира.
Палеонтологические доказательства эволюции
Палеонтология (греч. palaios – древний) изучает ископаемые останки вымерших животных, их сходства и различия с ныне живущими видами. Сопоставляя друг с другом ископаемые останки разных геологических эпох, можно увидеть как происходила эволюция различных видов животных и растений.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.