что делает ускоритель частиц
Что такое ускоритель частиц? Как это работает?
История ускорителя частиц восходит к 1930 году, когда ученые разработали трансформатор на 200 000 вольт и ускоряли протоны по прямой траектории. Хотя машина не выполнила свое предназначение, она начала поиски ускорителей частиц более высокой энергии, которые продолжаются и по сей день.
В 20-м веке ускорители частиц были названы атомными разрушителями. Название сохраняется, несмотря на то, что современные ускорители создают столкновения между двумя субатомными частицами, а не атомными ядрами.
Столкновения таких частиц могут помочь ученым понять, как работает Вселенная. Ускорители частиц высоких энергий чрезвычайно полезны для фундаментальных и прикладных исследований в различных областях, от электроники и медицины до международной безопасности.
Мы рассмотрели некоторые из наиболее интересных фактов и статистических данных о современных ускорителях частиц, которые пробудят в вас интерес к физике частиц. Давайте начнем с основного.
Типы ускорителей частиц
Существует два основных типа ускорителей:
1) Электростатические ускорители: используйте статические электрические поля для увеличения скорости заряженных частиц. Положительная частица притягивается к отрицательно заряженной пластине, а отрицательная частица притягивается к положительно заряженной пластине.
Они простые, менее дорогие и имеют ограниченный выход энергии, что означает, что они не могут разогнать частицы до чрезвычайно высоких скоростей. Максимальная кинетическая энергия частиц зависит от ускоряющего напряжения, которое ограничено явлением, называемым электрическим пробоем.
Генератор Ван де Граафа и генератор Кокрофта-Уолтона являются наиболее распространенным примером электростатических ускорителей. Катодно-лучевая трубка любого старого компьютерного монитора является небольшим примером ускорителя этого типа.
2) Электродинамические ускорители: используйте изменяющиеся электромагнитные поля (либо колеблющиеся радиочастотные поля, либо магнитную индукцию) для ускорения частиц.
В этих устройствах частицы пропускаются через одно и то же электромагнитное поле несколько раз, поэтому они могут достигать гораздо более высоких скоростей, чем в электростатических ускорителях. Максимальная кинетическая энергия частиц не ограничена напряженностью ускоряющего поля.
Эти ускорители можно подразделить на два класса:
Как это работает?
На базовом уровне ускорители частиц генерируют пучок заряженных частиц, который используется для многочисленных исследовательских целей. Обычно пучок состоит из заряженных субатомных частиц (таких, как протоны и электроны), но в некоторых случаях используются целые атомы более тяжелых элементов (таких, как уран и золото).
Например, в кольцевых ускорителях частицы непрерывно ускоряются в круглой трубе. Напряженность электрического поля увеличивается с каждым проходом, повышая уровень энергии пучка частиц.
Когда частицы достигают необходимой скорости, цель (например, тонкий кусок металлического листа) помещается в их дорожку, где детектор частиц анализирует столкновение.
В целом, существует 6 ключевых компонентов в ускорителях частиц:
А) Частица S : обеспечивает ускорение частиц (таких, как электроны или протоны). Один баллон с газообразным водородом, например, может быть источником частиц. Один атом водорода содержит один электрон и один протон.
Б) Металлическая труба: содержит вакуум, в котором движется пучок частиц. Вакуум поддерживает беспыльную среду для беспрепятственного перемещения электрически заряженных частиц.
С) Электромагниты: контролируют движение частиц, когда они проходят через металлическую трубу.
Д) Электрические поля: регулярно переключаются с положительного на отрицательный. Это генерирует радиоволны, которые ускоряют заряженные частицы.
E) Цели: когда частицы достигают желаемой скорости, они сталкиваются с неподвижной целью. Иногда сталкиваются два пучка частиц.
F) Детекторы: регистрируют столкновение частиц и выявляют радиацию или субатомные частицы, генерируемые в процессе.
Самые большие ускорители частиц в мире
В настоящее время в мире действуют более 30 000 ускорителей частиц. Из них 44% используются для лучевой терапии, 41% для ионной имплантации, 9% для промышленной обработки и 4% для низкоэнергетических и биомедицинских исследований. Только 1% существующих ускорителей способны генерировать энергии свыше одного миллиарда электрон-вольт или 1 ГэВ.
В настоящее время Большой адронный коллайдер является самым мощным ускорителем частиц в мире. Он способен ускорять два пучка протонов до энергии 6,5 тера электрон-вольт. Когда эти два мощных пучка сталкиваются, они создают энергию центра масс 13 тераэлектронвольт (ТэВ).
Карта Большого адронного коллайдера| ЦЕРН
Машина лежит в туннеле глубиной 175 метров. Это 27 километров в окружности, и его кольцо магнитов может создавать магнитное поле 8.36 Тесла.
Структура содержит более 1000 дипольных магнитов, которые удерживают частицы, движущиеся почти со скоростью света: одна частица движется по 27-километровому кольцу 11 000 раз в секунду.
Он был разработан Европейской организацией ядерных исследований в сотрудничестве с более чем 10 000 исследователей и сотнями лабораторий и университетов из более чем 100 стран.
Частица бозона Хиггса, которую иногда называют «частицей Бога», была обнаружена в Большом Адронном Коллайдере в 2012 году. В том же году физики сформировали кварк-глюонную плазму, которая могла достигать 5,5 триллиона градусов по Цельсию — самой высокой температуры, зарегистрированной рукотворной машиной.
Бозон Хиггса впервые наблюдался во время экспериментов на Большом адронном коллайдере | Изображение предоставлено: Designua / Shutterstock
В ближайшие годы эта гигантская машина позволит физикам проверить различные теории физики элементарных частиц, включая анализ свойств бозонов Хиггса, поиск новых элементарных частиц, предлагаемых суперсимметричными теориями, а также других загадок во вселенной.
Применение
Применение в медицине. Ежегодно миллионы пациентов получают диагностику и лечение на основе ускорителей в клиниках и больницах по всему миру. Ускоренные частицы (такие, как протоны, электроны или более тяжелые заряженные частицы) используются для уничтожения раковых клеток и создания детального изображения изнутри тела.
Потребительские товары: ускорители частиц в настоящее время используются в различных промышленных процессах, начиная от сшивания пластмассы для термоусадочной пленки и заканчивая производством компьютерных чипов.
В частности, ускорители ионных пучков используются для изготовления электронных микросхем и упрочнения поверхностей материалов, подобных тем, которые используются в искусственных соединениях. Ускорители с электронным пучком, с другой стороны, обычно используются для изменения свойств материала, таких как пластические модификации для обработки поверхности.
Что еще они могут сделать?
Анализ столкновений частиц высоких энергий может быть полезным для фундаментальных и прикладных исследований в науке. Это может помочь физикам решить некоторые фундаментальные проблемы в физике, включая глубокую структуру пространства-времени и взаимосвязь между общей теорией относительности и квантовой механикой.
Столкновение двух протонов создает поток частиц мусора | CERN
Вот четыре основных вопроса, на которые ученые надеются ответить в течение следующих нескольких десятилетий:
По словам Стивена Хокинга, технология, основанная на ускорителе частиц, является самой близкой вещью к машинам времени. В 2010 году он написал статью, объясняющую, как можно путешествовать во времени.
Зачем вообще нужен LHC?
Узнав впервые о существовании LHC, повосхищавшись его размерами, поудивлявшись непонятности и практической бесполезности его задач, читатель, как правило, задает вопрос: а зачем вообще нужен этот LHC?
В этом вопросе есть сразу несколько аспектов. Зачем людям вообще нужны эти элементарные частицы, зачем тратить столько денег на один эксперимент, какая будет польза для науки от экспериментов на LHC? Здесь я попробую дать ответы, пусть краткие и субъективные, на эти вопросы.
Зачем обществу нужна фундаментальная наука?
Отношение большей части общества к фундаментальной науке — примерно такое же. Только вдобавок человек в современном обществе уже пользуется огромным количеством достижений фундаментальной науки, не задумываясь об этом.
Да, люди, конечно, признают, что высокие технологии делают жизнь комфортнее. Но при этом они неявно полагают, что технологии эти — результат чисто прикладных разработок. А вот это — большое заблуждение. Надо четко понимать, что перед практической наукой регулярно встают задачи, которые она сама решить просто не в состоянии — ни с помощью накопленного практического опыта, ни через прозрение изобретателей-рационализаторов, ни методом проб и ошибок. Зато они решаются с помощью фундаментальной науки. Скажем, те свойства вещества, которые недавно казались совершенно бесполезными, вдруг открывают возможность для создания принципиально новых устройств или материалов с неожиданными возможностями. Или же вдруг обнаруживается глубокая параллель между какими-то сложными объектами из сугубо прикладной и из фундаментальной науки, и тогда абстрактные научные результаты удается использовать на практике.
В общем, фундаментальная наука — это основа технологий в долгосрочной перспективе, технологий, понимаемых в самом широком значении. И если какие-то небольшие усовершенствования существующих технологий можно сделать, ограничиваясь сугубо прикладными исследованиями, то создать новые технологии — и с их помощью преодолевать новые проблемы, регулярно встающие перед обществом! — можно, лишь опираясь на фундаментальную науку.
Опять же, прибегая к аналогиям, можно сказать, что пытаться развивать науку, ориентируясь только на немедленную практическую пользу — это словно играть в футбол, прыгая исключительно на одной ноге. И то, и другое, в принципе, можно себе представить, но в долгосрочной перспективе эффективность от обоих занятий почти нулевая.
Почему фундаментальной наукой занимаются сами ученые?
Кстати, стоит подчеркнуть, что большинство ученых занимается наукой вовсе не потому, что это может оказаться полезно для общества. Люди занимаются наукой, потому что это жутко интересно. Даже когда просто изучаешь открытые кем-то законы или построенные кем-то теории, это уже «щекочет мозги» и приносит огромное удовольствие. А те редкие моменты, когда удается самому открыть какую-то новую грань нашего мира, доставляют очень сильные переживания.
Эти ощущения отдаленно напоминают чувства, возникающие при чтении детектива: автор построил перед тобой загадку, а ты пытаешься разгадать ее, стараясь увидеть в описываемых фактах скрытый, взаимосвязанный смысл. Но если в детективе глубина и стройность загадки ограничены фантазией автора, то фантазия природы выглядит пока неограниченной, а ее загадки — многоуровневыми. И эти загадки не придуманы кем-то искусственно, они настоящие, они вокруг нас. Вот ученым и хочется справиться хотя бы с кусочком этой вселенской головоломки, подняться еще на один уровень понимания.
Кому нужны элементарные частицы?
Хорошо, положим, фундаментальной наукой действительно стоит заниматься, раз она спустя несколько десятков лет сможет привести к конкретным практическим достижениям. Тогда давайте будем изучать фундаментальное материаловедение, будем манипулировать отдельными атомами, будем развивать новые методики диагностики веществ, поучимся рассчитывать сложные химические реакции на молекулярном уровне. Можно легко поверить в то, что спустя десятки лет всё это приведет к новым практическим приложениям.
Но трудно себе представить, какая в принципе может быть конкретная практическая польза от топ-кварков или от хиггсовского бозона. Скорее всего, вообще никакой. Тогда какой толк в развитии физики элементарных частиц?
Толк огромный, и заключается он вот в чём.
Физические явления эффективнее всего описываются на языке математики. Эту ситуацию обычно называют удивительной (знаменитое эссе Ю. Вигнера о «непостижимой эффективности математики»), но тут есть и другой, не менее сильный повод для удивления. Всё головокружительное разнообразие явлений, происходящих в нашем мире, описывается лишь очень небольшим числом математических моделей. Осознание этого поразительного, совсем не очевидного свойства нашего мира — одно из самых важных открытий в физике.
Пока знания ограничиваются лишь «повседневной» физикой, эта тенденция может оставаться незаметной, но чем глубже знакомишься с современной физикой, тем более яркой и завораживающей выглядит эта «математическая экономность» природы. Явление сверхпроводимости и хиггсовский механизм возникновения масс элементарных частиц, электроны в графене и безмассовые элементарные частицы, жидкий гелий и внутренности нейтронных звезд, теория гравитации в многомерном пространстве и сверххолодное облачко атомов — вот лишь некоторые пары разных природных явлений с удивительно схожим математическим описанием. Хотим мы или нет, но эта связь между разными физическими явлениями через математику — это тоже закон природы, и им нельзя пренебрегать! Это полезный урок для тех, кто пытается рассуждать о физических явлениях, опираясь только на их «природную сущность».
Аналогии между объектами из разных областей физики могут быть глубокими или поверхностными, точными или приблизительными. Но благодаря всей этой сети математических аналогий наука физика предстает как многогранная, но цельная дисциплина. Физика элементарных частиц — это одна из ее граней, которая через развитие математического формализма крепко связана со многими более «практическими» областями физики, да и естественных наук в целом.
Поэтому, кто знает, может быть, изучая теорию гравитации, мы в конце концов придем к пониманию турбулентности, развитие методов квантовой теории поля позволит по-иному взглянуть на генетическую эволюцию, а эксперименты по изучению устройства протона откроют нам новые возможности для создания материалов с экзотическими свойствами.
Кстати, иногда в ответ на вопрос о пользе физики элементарных частиц начинают перечислять те конкретные методики и приборы, которые явились побочным результатом изучения элементарных частиц. Их уже немало: адронная терапия раковых опухолей, позитронно-эмиссионная томография, мюонная химия, цифровые малодозные рентгеновские установки, самые разнообразные применения синхротронного излучения, плюс еще несколько методик в процессе разработки. Это всё верно, но надо понимать, что это именно побочная, а не главная польза от физики элементарных частиц.
Зачем надо изучать нестабильные частицы?
Окружающий нас мир состоит из частиц трех типов: протонов, нейтронов, электронов. Казалось бы, если мы хотим знать устройство нашего мира, давайте изучать только эти частицы. Кому интересны частицы, которые живут мгновения, а потом снова распадаются? Какое отношение эти частицы имеют к нашему микромиру?
Во-первых, многие из этих нестабильных частиц напрямую влияют на свойства и поведение наших обычных частиц — и это, кстати, одно из важных открытий в физике частиц. Оказывается, эти нестабильные частицы на самом деле присутствуют в нашем мире, но не в виде самостоятельных объектов, а в виде «некоторого» облачка, окутывающего каждую обычную частицу. И то, как обычные частицы взаимодействуют друг с другом, зависит не только от них самих, но и от окружающих их «облачков». Эти облачка порождают ядерные силы, связывающие протоны и нейтроны в ядра, они заставляют распадаться свободный нейтрон, они наделяют обычные частицы массой и другими свойствами.
Эти нестабильные частицы — невидимая, но совершенно неотъемлемая часть нашего мира, заставляющая его крутиться, работать, жить.
Вторая причина тоже вполне понятная. Если вам надо разобраться с устройством или с принципом работы какой-то очень сложной вещи, ваша задача станет намного проще, если вам разрешат как-то изменять, перестраивать эту вещь. Собственно, этим и занимаются отладчики (не важно чего: техники, программного кода и т. п.) — они смотрят, что изменится, если сделать так, повернуть эдак.
Экзотические для нашего мира элементарные частицы — это тоже как бы обычные частицы, у которых «что-то повернуто не так». Изучая все эти частицы, сравнивая их друг с другом, можно узнать о «наших» частицах гораздо больше, чем в экспериментах только с протонами да электронами. Уж так устроена природа — свойства самых разных частиц оказываются глубоко связаны друг с другом!
Зачем нужны такие огромные ускорители?
Ускоритель — это по своей сути микроскоп, и для того, чтобы разглядеть устройство частиц на очень малых масштабах, требуется увеличивать «зоркость» микроскопа. Предельная разрешающая способность микроскопов определяется длиной волны частиц, используемых для «освещения» мишени — будь то фотоны, электроны или протоны. Согласно квантовым законам, уменьшить длину волны квантовой частицы можно путем увеличения ее энергии. Поэтому-то и строятся ускорители на максимально достижимую энергию.
В кольцевых ускорителях частицы летают по кругу и удерживаются на этой траектории магнитным полем мощных сверхпроводящих магнитов. Чем больше энергия частиц — тем большее требуется магнитное поле при постоянном радиусе или тем большим должен быть радиус при постоянном магнитном поле. Увеличивать силу магнитного поля очень трудно с физической и инженерной точки зрения, поэтому приходится увеличивать размеры ускорителя.
Впрочем, физики сейчас работают над новыми, намного более эффективными методиками ускорения элементарных частиц (см., например, новость Первое применение лазерных ускорителей будет медицинским). Если эти методы оправдают свои ожидания, то в будущем максимально достижимая энергия частиц сможет увеличиться при тех же размерах ускорителей. Однако ориентироваться тут можно лишь на срок в несколько десятков лет.
Но не стоит думать, что гигантские ускорители — это единственное орудие экспериментальной физики элементарных частиц. Есть и «второй фронт» — эксперименты с меньшей энергией, но с очень высокой чувствительностью. Тут примером могут служить так называемые b-фабрики BaBar в Стэнфорде и Belle в Японии. Это электрон-позитронные коллайдеры со скромной энергией (около 10 ГэВ), но с очень высокой светимостью. На этих коллайдерах рождаются B-мезоны, причем в таких больших количествах, что удается изучить чрезвычайно редкие их распады и заметить проявление разнообразных тонких эффектов. Эти эффекты могут быть вызваны новыми явлениями, которые изучаются (правда, с другой точки зрения) и на LHC. Поэтому такие эксперименты столь же важны, как и эксперименты на коллайдерах высоких энергий.
Зачем нужны такие дорогие эксперименты?
Часто можно услышать возмущенные голоса: а по какому праву физики тратят такие огромные деньги налогоплательщиков на удовлетворение собственного любопытства? Ведь их можно потратить и с гораздо большей конкретной практической пользой!
На самом деле, если взглянуть на ситуацию реалистично, то альтернатива LHC состояла не в том, чтобы пустить эти же деньги на какую-то «практически полезную» деятельность, а в том, чтобы провести на них еще несколько десятков экспериментов по физике элементарных частиц, но среднего масштаба.
Логика тут совершенно прозрачна. Правительства большинства стран понимают, что некоторую долю бюджета необходимо тратить на фундаментальные научные исследования — от этого зависит будущее страны. Эта доля, кстати, не такая уж и большая, порядка 2-3% (для сравнения, военные расходы составляют, как правило, десятки процентов). Расходы на фундаментальную науку выделяются, разумеется, не в ущерб другим статьям бюджета. Государства тратят деньги и на здравоохранение, и на социальные проекты, и на развитие технологий с конкретными практическими применениями, и на благотворительность, и на помощь голодающим Африки и т. д. «Научные» деньги — это отдельная строка бюджета, и эти деньги сознательно направлены на развитие науки.
Как это финансирование распределяется между разными научными дисциплинами, зависит от конкретной страны. Значительная часть уходит в биомедицинские исследования, часть — в исследования климата, в физику конденсированных сред, астрофизику и т. д. Своя доля уходит и в физику элементарных частиц.
Типичный годовой бюджет экспериментальной физики элементарных частиц, просуммированный по всем странам, — порядка нескольких миллиардов долларов (см., например, данные по США). Большинство этих денег тратится на многочисленные эксперименты небольшого масштаба, которых поставлено в последние годы порядка сотни, причем они финансируются на уровне отдельных институтов или в редких случаях — стран. Однако опыт последних десятилетий показал, что если объединить хотя бы часть денег, выделяемых на ФЭЧ во многих странах, в результате может получиться эксперимент, научная ценность которого намного превзойдет суммарную ценность множества мелких разрозненных экспериментов.
Именно с целью резкого увеличения научной эффективности при тех же деньгах и был создан LHC. Подробности про ожидаемую научную ценность экспериментов можно узнать из списка задач, стоящих перед LHC.
Как работает ускоритель
Предварительный ускоритель
Первым делом частицы надо создать и затем разогнать до небольшой энергии. Всё это делается в маленьком предварительном ускорителе. Электроны и протоны добывают из обычного вещества, например, с помощью электрического поля или ионизации. Частицы «утягиваются» электрическим полем, ускоряются под его действием, а затем попадают в небольшой синхротрон, который называется «накопитель». В нём частицы накапливаются, и когда их станет достаточно много, они «впрыскиваются» в основной ускоритель. Там с ними начинаются эксперименты, а в предварительном ускорителе частицы вновь накапливаются с нуля. Каждый такой цикл занимает несколько часов.
Если же надо проводить эксперименты с частицами, которых отсутствуют в обычном веществе (например, антипротоны), то схема усложняется. Вначале, как и раньше, получают протоны, затем пучок протонов направляется на специальную мишень (конвертор). При столкновении протонов с ядрами мишени рождается мешанина частиц, среди которых есть и антипротоны. С помощью магнитных полей эти антипротоны выделяют и затем направляют в накопитель.
Система «руления» пучком. Поворотные магниты
Когда физики говорят про движение частиц внутри ускорителя, то они называют их коллективно: пучок частиц. Этот пучок не размазан по всей длине трубы, а собран в отдельные сгустки частиц. Обычно сгусток представляет собой длинную (несколько сантиметров или десятков сантиметров) и тонкую (десятки микрон) «иголочку», состоящую из летящих рядом частиц.
По первому закону Ньютона, частицы в свободном состоянии стремятся двигаться по прямой. Поэтому для того, чтобы удерживать их внутри кольцевого ускорителя, их траекторию приходится заворачивать с помощью магнитного поля. Для этого вдоль ускорительного кольца на некотором расстоянии друг от друга устанавливают специальные поворотные магниты. В результате траектория пучка становится похожей на скругленный многоугольник: в его вершинах пучок поворачивается на небольшой угол, а затем летит до следующего магнита по прямой. Именно на прямых участках установлена вся остальная аппаратура.
Чем больше энергия частиц, тем труднее завернуть их в дугу нужного радиуса и тем более сильные поворотные магниты приходится использовать. На коллайдере LHC используются поворотные магниты с индукцией 8 Тесла (примерно в 100 тысяч раз сильнее магнитного поля Земли). Такое сильное поле удается получать лишь в сверхпроводящих электромагнитах и только при очень низкой температуре. В результате всю установку (а это кольцо периметром в 27 км!) приходится охлаждать до очень низких температур (ниже 2 К). Это лишний раз подчеркивает, что ускорительное кольцо — это не просто «труба с магнитным полем», а сложнейшая техническая конструкция.
Магнитное поле в поворотных магнитах не однородное; оно чуть слабее во внутренней части и чуть сильнее во внешней части дуги. Это сделано для того, чтобы вернуть обратно пучок, слегка сбившийся с оптимальной орбиты.
Система контроля и «аварийный выход» для пучка
Несмотря на то, что пучок частиц содержит не так много частиц (суммарная масса всех частиц в пучке обычно составляет нанограммы и меньше!), в нём может быть запасена огромная кинетическая энергия. Например, протонный пучок на LHC обладает энергией, сопоставимой с кинетической энергией летящего реактивного самолета. Если будет потерян контроль над пучком, то он, вырвавшись на свободу, прожжет стенку вакуумной трубы, аппаратуру ускорителя и даже многометровые бетонные стены. Поэтому система слежения за положением пучка абсолютно необходима для безопасной работы ускорителя.
Система слежения в режиме реального времени контролирует, где именно внутри вакуумной трубы проходит в данный момент траектория пучка. Если она немного отклоняется от оси трубы, магнитные поля стараются выровнять его положение. Если же отклонение становится критическим, то происходит «сброс пучка» — специальный очень быстрый магнит резко включается и выводит пучок из кольца ускорителя по специальному «аварийному выходу» вдаль, где огромная бетонная мишень принимает на себя всю его энергию. Обычно достаточно сделать по одному аварийному выходу на каждый из двух встречных пучков: нестабильность пучка развивается не столь быстро, и пучок за это время успеет долететь до своего выхода.
Регулярный сброс пучка происходит также и в штатном режиме. Летая в ускорителе, пучок постепенно теряет частицы — некоторые выбывают при столкновениях в детекторе, некоторые просто рассеиваются на остаточных молекулах газа в вакуумной камере. Каждые несколько часов, когда пучок ослабевает в несколько раз, его «сбрасывают» на ту же стоящую поодаль мишень, а в ускоритель впрыскивается новая порция частиц.
Ускорительная секция
Когда частицы только-только «впрыснуты» из предварительного ускорителя в основной, они обладают еще слишком малой энергией, и их нужно ускорять. Это осуществляется в специальной ускорительной секции — клистроне. Клистрон — это специальная вакуумная камера причудливой формы, отдаленно напоминающий пустую микроволновку. В этой камере возбуждается мощная стоячая электромагнитная волна, частота и фаза которой тщательно согласованы с пролетающими сгустками: когда очередной сгусток влетает в ускорительную секцию, сильное электрическое поле его подталкивает вперед.
Магнитные линзы
Частицы, летящие в пучке друг рядом с другом, имеют одинаковые электрические заряды и поэтому отталкиваются. В результате пучок стремится расплыться в поперечном направлении. Для предотвращения этого расхождения пучок приходится постоянно фокусировать. Этим занимаются специальные квадрупольные магниты, расставленные вдоль ускорительного кольца, — «магнитные линзы».
Самая важная пара магнитных линз установлена непосредственно перед входом встречных пучков в детектор — эти линзы называют «финальные квадруполи». Именно там частицы из встречных пучков должны будут столкнуться, чтобы породить новые тяжелые частицы. Вероятность столкновения тем выше, чем «туже» сфокусированы пучки в месте встречи: если диаметр «пятна фокусировки» в каждом пучке уменьшить в два раза, то частота столкновений возрастет в 16 раз.