что делает логическая операция отрицание

Что делает логическая операция отрицание

2) Логическое сложение или дизъюнкция:

Таблица истинности для дизъюнкции

ABF
111
101
011
000

3) Логическое отрицание или инверсия:

Таблица истинности для инверсии

A¬ А
10
01

4) Логическое следование или импликация:

«A → B» истинно, если из А может следовать B.

Обозначение: F = A → B.

Таблица истинности для импликации

ABF
111
100
011
001

5) Логическая равнозначность или эквивалентность:

Источник

Информатика. 7 класс

Электронное приложение к учебному пособию

Напишите нам

белый — основные материалы, обязательные для изучения;

голубой — примеры, иллюстрирующие основные материалы;

желтый — определения основных понятий;

светло-зеленый — исторические сведения, информация об ученых, внесших вклад в развитие информатики, и другие интересные факты.

В учебном пособии используются следующие условные обозначения:

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание— вопросы и задания для проверки знаний;

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание— раздел «Упражнения» содержит задания, при выполнении которых используется компьютер;

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание— раздел «Упражнения» содержит задания для выполнения в тетради;

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание— раздел «Упражнения» содержит задания, при выполнении которых может быть использована информация, размещенная на Национальном образовательном портале;

* — задание или пример для любознательных.

§ 3. Логика высказываний

Возможности компьютера велики. Он может помочь врачу поставить правильный диагноз пациенту, пассажиру — выбрать билет на нужный поезд; компьютер может управлять автомобилем, составлять прогнозы погоды и многое другое.

Для того чтобы выяснить, может ли компьютер «думать», сначала нужно понять, как думает человек. Ведь именно человек создал компьютер, и компьютер выполняет только те действия, которым его научил человек.

Наши знания об окружающем мире мы выражаем в повествовательных предложениях. Такие предложения могут отражать действительность верно или неверно. Думая, человек строит свои рассуждения, основываясь на собственных знаниях.

Еще Аристотель заметил, что правильность рассуждений не зависит от содержания, а определяется формой.

Наука, изучающая формы рассуждений, называется формальной логикой. Математическая логика использует математические методы для исследования способов построения рассуждений, доказательств, выводов.

Одним из разделов современной математической логики является логика высказываний.

На правилах математической логики построены процессы «рассуждений» компьютера. Изучение логики высказываний поможет понять, как можно научить компьютер «думать».

3.1. Понятие высказывания

Высказывание — повествовательное предложение (утверждение), о котором в настоящее время можно сказать, истинно оно или ложно (пример 3.1).

Об истинности высказывания можно говорить только в настоящем времени: высказывание «Идет дождь» может быть истинным сейчас и ложным через час.

Как правило, высказывания обозначают заглавными латинскими буквами. Если высказывание А истинно, пишут А = 1, если ложно — А = 0 (пример 3.2). Часто используют такие обозначения: А = true (истина) и А = false (ложь).

Пример 3.1. Следующие предложения являются высказываниями:

В = «Масса измеряется в литрах».

Для приведенного примера А = 1, В = 0.

3.2. Логическая операция НЕ

С высказываниями можно производить различные операции, подобно тому как в математике — с числами (сложение, умножение, вычитание и др.).

Логическая операция НЕ (отрицание) меняет значение высказывания на противоположное: истинно на ложно, а ложно на истинно.

Логическое отрицание получается из высказывания путем добавления частицы «не» к сказуемому или с использованием оборота «неверно, что…» (пример 3.3). Иногда при построении отрицаний некоторые слова заменяют их антонимами, если это возможно.

Если высказывание содержит слова «все», «всякий», «любой», то отрицание такого высказывания строится с использованием слов «некоторые», «хотя бы один». И наоборот, для высказываний со словами «некоторые», «хотя бы один» отрицание будет содержать слова «все», «всякий», «любой» (пример 3.4).

Любую операцию над числами в математике обозначают каким-либо знаком: «+», «–», «·», «:». Для логических операций тоже определены свои обозначения. Если операцию отрицания применяют к высказыванию А, то это можно записать так: НЕ А. Можно встретить и другие обозначения для логической операции отрицания: Not A, ¬A, Ā,

Если нас интересует истинность высказывания НЕ А, то ее (вне зависимости от содержания) можно определить по таблице истинности:

Из таблицы истинности следует, что отрицанием истинного высказывания будет ложное, а отрицанием ложного — истинное (пример 3.5). Высказывание и его отрицание никогда не могут быть истинными или ложными одновременно.

Отрицанием высказывания «У меня есть компьютер» будет высказывание «У меня нет компьютера» (или высказывание «Неверно, что у меня есть компьютер»). Истинность этих высказываний зависит от конкретного человека. Для одних будет истинным первое высказывание, а для других — второе. Но оба высказывания не могут быть истинными или ложными одновременно для одного и того же человека.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Аристотель (384—322 гг. до н. э.) — древнегреческий философ. Первым систематизировал формы и правила мышления, разработал теорию умозаключений и доказательств, описал логические операции. Аристотелю принадлежат формулировки основных законов мышления.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

У истоков современной логики стоит немецкий математик Готфрид Вильгельм Лейбниц ( 1646—1716 ), предложивший идею представить логические рассуждения как вычисления, подобные вычислениям в математике.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Английский математик Джордж Буль (1815—1864) перенес на логику законы и правила математических (алгебраических) действий, создав тем самым алгебру логики.

Пример 3.1. Следующие предложения являются высказываниями:

В = «Масса измеряется в литрах».

Для приведенного примера А = 1, В = 0.

Пример 3.3. Построим отрицание высказываний.

Пример 3.4. Построим отрицание высказываний.

Пример 3.5. Определение истинности высказываний с отрицаниями.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

1 Что такое высказывание?

2 Какие значения могут иметь высказывания?

3 Что делает логическая операция отрицание?

Источник

Логические операции. ➞ Что такое конъюнкция, дизъюнкция, импликация

Тот, кто хочет подробно разбираться в цифровых технологиях должен понимать основы такой темы, как алгебра логики. В этой статье будут разобраны основные определения, а также показаны самые важные логические операции, такие как конъюнкция, дизъюнкция, импликация и т.д.

Основные положения

Для начала следует разобраться, для чего нужна алгебра логики – главным образом, этот раздел математики и информатики, нужен для работы с логическими выражениями и высказываниями.

Логическим высказыванием называется утверждение (или запись), которое мы можем однозначно классифицировать, как истинное или ложное (1 или 0 в информатике).

Примером таким высказываний будут являться:

Логические высказывания делятся на два типа — простые и сложные.

В алгебре логики, как простые, так и сложные высказываниями описываются булевыми выражениями.

Булево выражение – это символическое (знаковое) описание высказывания.

Операции

Ниже рассмотрим основные операции, которые применяются в булевой алгебре. Их хватит, чтобы упростить львиную долю всех выражений, которые Вам встретятся.

Конъюнкция

Конъюнкция (булево умножение) — функция, по своему смыслу приближенная к союзу «И». При выполнении конъюнкции результат истинен (равен 1) тогда и только тогда, когда истинны ВСЕ переменные. Если хотя бы одно из высказываний ложно, то ложно и всё выражение (равно 0).

Функция может работать как с двумя операндами (высказываниями), так и с тремя, четырьмя и т.д. В математике обозначается с помощью знаков ​\( \wedge \) и &. Обозначение в языках программирования AND, &&. Таблица истинности для двух операндов:

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Дизъюнкция

Дизъюнкцией называется функция булева сложения. По смыслу дизъюнкция приближена к союзу «ИЛИ». В результате выполнения данной функции результирующие выражение является истинным, когда хотя бы одно из высказываний в этом выражении тоже истинно.

Булево сложение, также как и умножение, может работать с произвольным количеством операндов. В математике обозначается как V, а в программировании с помощью OR или I.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Инверсия

Логическое отрицание – функция, работающая с одним высказыванием, и заменяющая истину на ложь, а ложь на истину. В математике обозначается с помощью черты над значением, а в программирование и информатике с помощью слова NOT.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Импликация

Также называется булевым следованием. В русском языке данной функции соответствует оборот «Если …, то …». Например, если на улице гремит гром, то стоит пасмурная погода.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Эквивалентность

Булева тождественность или равенство. На простом языке будет обозначено как «… эквивалентно (равно) …». Результат будет истинным тогда, когда все значения в выражении будут иметь одинаковую истинность.

Обозначается с помощью трех черточек или ⟺.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Порядок выполнения операций

Логические операции выполняются в следующем порядке:

Если в формуле указаны скобки, то порядок выполнения действий в скобках точно такой же, как написано выше.

Пример

Дано два отрезка B = [2,10], C = [6,14]. Из предложенных вариантов ответа выберите такой отрезок A, что формула \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) истинна при любом значении z. Варианты ответа:

Решение: Подставим в уравнение \( ((z \in A) \Longrightarrow (z \in B)) \vee (z \in C) \) =1 значения B и C и составим таблицу истинности:

Получившаяся формула \( ((z \in A) \Longrightarrow (z \in [2,10])) \vee (z \in [6,14])=1 \). По условию ​​​\( z \in A \)=1.

Таблица истинности для всех отрезков:

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание

Ответ: A = [3,11].

Видео

Заключение

Вот Вы и познакомились с основными логическими операциями и понятиями и знаете, что такое булево сложение и умножение. Если вас заинтересовала данная тема, то можете изучить булевы законы. Эти законы не проходятся в рамках школьной программы и служат для упрощения сложных выражений.

Источник

Что делает логическая операция отрицание

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание Тема 3. Основы математической логики 1. Логические выражения и логические операции.
2. Построение таблиц истинности и логических функций.
3. Законы логики и преобразование логических выражений.
Лабораторная работа № 3. Основы математической логики.

что делает логическая операция отрицание. Смотреть фото что делает логическая операция отрицание. Смотреть картинку что делает логическая операция отрицание. Картинка про что делает логическая операция отрицание. Фото что делает логическая операция отрицание 1. Логические выражения и логические операции

Исследования в алгебре логики тесно связаны с изучением высказываний (хотя высказывание — предмет изучения формальной логики). Высказывание — это языковое образование, в отношении которого имеет смысл говорить о его истинности или ложности (Аристотель).

Простым высказыванием называют повествовательное предложение, относительно которого имеет смысл говорить, истинно оно или ложно.

Считается, что каждое высказывание либо истинно, либо ложно и ни одно высказывание не может быть одновременно истинным и ложным.

Высказывания 1 и 3 являются истинными. Высказывание 2 – ложным , потому что число 27 составное 27=3*3*3.

Итак, отличительным признаком высказывания является свойство быть истинным или ложным, последние четыре предложения этим свойством не обладают.

С помощью высказываний устанавливаются свойства, взаимосвязи между объектами. Высказывание истинно, если оно адекватно отображает эту связь, в противном случае оно ложно.

Однако определение истинности высказывания далеко не простой вопрос. Например, высказывание «Число 1 +22 = 4294 967297 — простое», принадлежащее Ферма (1601-1665), долгое время считалось истинным, пока в 1732 году Эйлер (1707-1783) не доказал, что оно ложно. В целом, обоснование истинности или ложности простых высказываний решается вне алгебры логики. Например, истинность или ложность высказывания «Сумма углов треугольника равна 180°» устанавливается геометрией, причем в геометрии Евклида это высказывание является истинным, а в геометрии Лобачевского — ложным.

В булевой алгебре простым высказываниям ставятся в соответствие логические переменные, значение которых равно 1, если высказывание истинно, и 0, если высказывание ложно. Обозначаются логические переменные, большими буквами латинского алфавита.

Существуют разные варианты обозначения истинности и ложности логических переменных:

Сложные (составные) высказывания представляют собой набор простых высказываний (по крайней мере двух) связанных логическими операциями.

С помощью логических переменных и символов логических операций любое высказывание можно формализовать, то есть заменить логической формулой (логическим выражением).

Связки «НЕ», «И», «ИЛИ» заменяются логическими операциями инверсия, конъюнкция, дизъюнкция. Это основные логические операции, при помощи которых можно записать любое логическое выражение.

Введем перечисленные логические операции.

В алгебре множеств конъюнкции соответствует операция пересечения множеств, т.е. множеству получившемуся в результате умножения множеств А и В соответствует множество, состоящее из элементов, принадлежащих одновременно двум множествам.

Источник

Что делает логическая операция отрицание

Прежде всего, начнем с разбора названия самого предмета, а именно выясним, каково значение алгебры, логики, а затем алгебры логики.

Алгебра – это раздел математики, предназначенный для описания действий над переменными величинами, которые принято обозначать строчными буквами латинского алфавита – а, b, x, y и т.д. Действия над переменными величинами записываются в виде математических выражений.

Термин «логика» происходит от древнегреческого “logos”, означающего «слово, мысль, понятие, рассуждение, закон».

Алгеброй логики называется аппарат, который позволяет выполнять действия над высказываниями.

Алгебру логику называют также алгеброй Буля, или булевой алгеброй, по имени английского математика Джорджа Буля, разработавшего в XIX веке ее основные положения. В булевой алгебре высказывания принято обозначать прописными латинскими буквами: A, B, X, Y. В алгебре Буля введены три основные логические операции с высказываниями: Сложение, умножение, отрицание. Определены аксиомы (законы) алгебры логики для выполнения этих операций. Действия, которые производятся над высказываниями, записываются в виде логических выражений.

Логические выражения могут быть простыми и сложными.

Простое логическое выражение состоит из одного высказывания и не содержит логические операции. В простом логическом выражении возможно только два результата — либо «истина», либо «ложь».

Сложное логическое выражение содержит высказывания, объединенные логическими операциями. По аналогии с понятием функции в алгебре сложное логическое выражение содержит аргументы, которыми являются высказывания.

В качестве основных логических операций в сложных логических выражениях используются следующие:

• НЕ (логическое отрицание, инверсия);

• ИЛИ (логическое сложение, дизъюнкция);

• И (логическое умножение, конъюнкция).

Логическое отрицание является одноместной операцией, так как в ней участвует одно высказывание. Логическое сложение и умножение — двуместные операции, в них участвует два высказывания. Существуют и другие операции, например операции следования и эквивалентности, правило работы которых можно вывести на основании основных операций.

Все операции алгебры логики определяются таблицами истинности значений. Таблица истинности определяет результат выполнения операции для всех возможных логических значений исходных высказываний. Количество вариантов, отражающих результат применения операций, будет зависеть от количества высказываний в логическом выражении, например:

Операция НЕ — логическое отрицание (инверсия)

Логическая операция НЕ применяется к одному аргументу, в качестве которого может быть и простое, и сложное логическое выражение. Результатом операции НЕ является следующее:

• если исходное выражение истинно, то результат его отрицания будет ложным;

• если исходное выражение ложно, то результат его отрицания будет истинным.

Для операции отрицания НЕ приняты следующие условные обозначения:

Результат операции отрицания НЕ определяется следующей таблицей истинности:

Aне А
01
10

Результат операции отрицания истинен, когда исходное высказывание ложно, и наоборот.

Приведем примеры отрицания.

1. Высказывание «Земля вращается вокруг Солнца» истинно. Высказывание «Земля не вращается вокруг Солнца» ложно.

3. Высказывание «4 — простое число» ложно. Высказывание «4 — не простое число» истинно.

Принцип работы переключателя настольной лампы таков: если лампа горела, переключатель выключает ее, если лампа не горела — включает ее. Такой переключатель можно считать электрическим аналогом операции отрицания.

Операция ИЛИ — логическое сложение (дизъюнкция, объединение)

Логическая операция ИЛИ выполняет функцию объединения двух высказываний, в качестве которых может быть и простое, и сложное логическое выражение. Высказывания, являющиеся исходными для логической операции, называют аргументами. Результатом операции ИЛИ является выражение, которое будет истинным тогда и только тогда, когда истинно будет хотя бы одно из исходных выражений.

Применяемые обозначения: А или В, А V В, A or B.

Результат операции ИЛИ определяется следующей таблицей истинности:

ABА или B
000
011
101
111

Результат операции ИЛИ истинен, когда истинно А, либо истинно В, либо истинно и А и В одновременно, и ложен тогда, когда аргументы А и В — ложны.

Приведем примеры логического сложения.

1. Рассмотрим высказывание «В библиотеке можно взять книгу или встретить знакомого». Это высказывание формально можно представить так: С = А V В, где высказывание А — «В библиотеке можно взять книгу», а В — «В библиотеке можно встретить знакомого». Объединение этих высказываний при помощи операции логического сложения означает, что события могут произойти как отдельно, так и одновременно.

2. Рассмотрим высказывание «Знания или везение — залог сдачи экзаменов». «Успешно сдать экзамен может тот, кто все знает, или тот, кому повезло (например, вытянут единственный выученный билет), или тот, кто все знает и при этом выбрал «хороший» билет.

Кто хоть однажды использовал елочную гирлянду с параллельным соединением лампочек, знает, что гирлянда будет светить до тех пор, пока цела хотя бы одна лампочка. Логическая операция ИЛИ чрезвычайно схожа с работой подобной гирлянды, ведь результат операции ложь только в одном случае — когда все аргументы ложны.

Операция И — логическое умножение (конъюнкция)

Логическая операция И выполняет функцию пересечения двух высказываний (аргументов), в качестве которых может быть и простое, и сложное логическое выражение. Результатом операции И является выражение, которое будет истинным тогда и только тогда, когда истинны оба исходных выражения.

Применяемые обозначения: А и В, А ⋀ В, A & B, A and B.

Результат операции И определяется следующей таблицей истинности:

ABА и B
000
010
100
111

Результат операции И истинен тогда и только тогда, когда истинны одновременно высказывания А и В, и ложен во всех остальных случаях.

Приведем примеры логического умножения.

1. Рассмотрим высказывание «Умение и настойчивость приводит к достижению цели». Достижение цели возможно только при одновременной истинности двух предпосылок — умения И настойчивости.

Логическую операцию И можно сравнить с последовательным соединением лампочек в гирлянде. При наличии хотя бы одной неработающей лампочки электрическая цепь оказывается разомкнутой, то есть гирлянда не работает. Ток протекает только при одном условии — все составляющие цепи должны быть исправны.

Операция «ЕСЛИ-ТО» — логическое следование (импликация)

Эта операция связывает два простых логических выражения, из которых первое является условием, а второе — следствием из этого условия.

если А, то В; А влечет В; if A then В; А-> В.

Результат операции следования (импликации) ложен только тогда, когда предпосылка А истинна, а заключение В (следствие) ложно.

Приведем примеры операции следования.

1. Рассмотрим высказывание «Если идет дождь, то на улице сыро». Здесь исходные высказывания «Идет дождь» и «На улице сыро». Если не идет дождь и не сыро на улице, результат операции следования — истина. На улице может быть сыро и без дождя, например, когда прошла поливочная машина или дождь прошел накануне. Результат операции ложен только тогда, когда дождь идет, а на улице не сыро.

a) А — ложно, В — ложно (1-я строка таблицы истинности). Можно найти такие числа, для которых истиной является высказывание «если А — ложно, то и В — ложно». Например, х = 4, 17, 22.

b) А — ложно, В — истинно (2-я строка таблицы истинности). Можно найти такие числа, для которых истиной является высказывание «если А — ложно, то В — истинно». Например, х = б, 12, 21.

c) А — истинно, В — ложно (3-я строка таблицы истинности). Невозможно найти такие числа, которые делились бы на 9, но не делились на 3. Истинная предпосылка не может приводить к ложному результату импликации.

d) А — истинно, В — истинно (4-я строка таблицы истинности). Можно найти такие числа, для которых истиной является высказывание «если А — истинно, то и В — истинно». Например, х = 9, 18, 27.

Операция «А тогда и только тогда, когда В» (эквивалентность, равнозначность)

Применяемое обозначение: А = В, А

B

001
010
100
111

Результат операции эквивалентность истинен только тогда, когда А и В одновременно истинны или одновременно ложны.

Приведем примеры операции эквивалентности:

1. День сменяет ночь тогда и только тогда, когда солнце скрывается за горизонтом;

2. Добиться результата в спорте можно тогда и только тогда, когда приложено максимум усилий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *