что даст термоядерный реактор
Создать термоядерный реактор на Земле реально. Какие будут последствия?
Ученые, разрабатывающие компактную версию термоядерного реактора, показали в серии исследовательских работ, что он все-таки может работать. В семи рецензируемых статьях, опубликованных во вторник в специальном выпуске The Journal of Plasma Physics, исследователи изложили доказательства того, что проект SPARC добьется успеха и будет производить в 10 раз больше энергии, чем потребляет. Это возродило надежды, что у людей получится имитировать процесс выработки энергии Солнцем. Рассказываем, почему человечеству необходим термоядерный синтез и спасет ли человечество этот проект.
Читайте «Хайтек» в
Зачем нужна термоядерная энергия?
Чтобы предотвратить повышение глобальной температуры более чем на 1,5 градуса по Цельсию в этом веке, международному сообществу придется сократить выбросы углерода на 45% к 2030 году и до нуля к середине века. Между тем, количество выбросов продолжает расти с каждым годом, и процесс этот лишь ускоряется. Сухие цифры: в 2017 рост составил 1,6%, а в 2018 году достиг рекордного уровня, увеличившись на на 2,7%. Что еще хуже — глобальный спрос на энергию, по прогнозам, вырастет примерно на 27% к 2040 году, или на 3 743 млн тонн нефтяного эквивалента (мтнэ). Тонна нефтяного эквивалента является единицей энергии и определяется как количество энергии, выделяющейся при сжигании одной тонны из сырой нефти.
А что, если бы было одно энергетическое решение, которое могло бы решить все эти насущные проблемы? Хотя это звучит фантастически, оно существует.
Но есть способ получше.
Что такое термоядерный синтез и как его применить на Земле?
«Достижение контролируемых термоядерных реакций, которые потребляют больше энергии, чем требуется для их генерации, и в промышленных масштабах рассматривается как потенциальный ответ на изменение климата», — объясняет научный корреспондент Натаниэль Гроневольд для Scientific American. «Энергия термоядерного синтеза устранит потребность в ископаемом топливе и решит проблемы прерывистости и надежности, присущие возобновляемым источникам энергии. Энергия будет генерироваться без опасного количества излучения, которое вызывает беспокойство по поводу ядерной энергии деления».
Официальные лица Международного термоядерного экспериментального реактора (ИТЭР), многонационального проекта, базирующегося на юге Франции, объявили, что теперь они находятся всего в 6,5 лет от «Первой плазмы», что является исторической вехой. Согласно пресс-релизу на этой неделе, проект ИТЭР, поддерживаемый консорциумом из 35 стран, в настоящее время завершен на 65%. Недавно установленная секция — основание криостата и нижний цилиндр — прокладывает путь для установки токамака, технологической конструкции, выбранной для размещения мощного магнитного поля, которое будет окружать ядро термоядерного синтеза сверхгорячей плазмы.
Проблемы ядерного синтеза
Ядерный синтез так трудно осуществить из-за экстремальных условий — например, в ядре Солнца — которые требуется воспроизвести здесь, на Земле. Как пояснили в Министерстве энергетики США, «термоядерные реакции изучаются учеными, но их трудно поддерживать в течение длительных периодов времени из-за огромного давления и температуры, необходимых для соединения ядер».
Энергия термоядерного синтеза требует удержания очень горячей плазмы под высоким давлением. Для магнитного удержания очень горячей — во много раз более горячей, чем центр Солнца — плазмы требуются сильные магнитные поля. Они должны в 10 раз превышать атмосферное давление на поверхности Земли. Сила магнитного поля является критическим параметром в достижении этих условий, поскольку оно обеспечивает как изоляцию, чтобы поддерживать плазму горячей, так и внешнее давление, чтобы стабильно удерживать ее — и все это без физического контакта между плазмой и поверхностью материала.
Однако на этой неделе надежда на получение чистой энергии снова зажлась.
Проект SPARC
Ученые, разрабатывающие компактную версию ядерного термоядерного реактора, показали в серии исследовательских работ: он должен работать, возродив надежды на то, что давно неуловимая цель имитации произведения Солнцем энергии может быть достигнута и в конечном итоге будет способствовать борьбе с климатом.
Центр плазменных исследований и термоядерного синтеза Массачусетского технологического института в сотрудничестве с частным стартапом Commonwealth Fusion Systems (CFS) разрабатывает концептуальный проект SPARC. Это компактный высоковольтный эксперимент с чистой термоядерной энергией. Как ожидается, SPARC будет размером с существующие термоядерные устройства среднего масштаба, но с гораздо более сильным магнитным полем. Опираясь на законы физики, ученые надеются, что устройство будет производить 50–100 МВт термоядерной мощности. Такой эксперимент станет первой демонстрацией создания чистой энергии и возможностью создания устройства, построенного с использованием новой сверхпроводящей технологии. SPARC вписывается в общую стратегию ускорения разработки термоядерного синтеза за счет использования новых высокополевых высокотемпературных сверхпроводящих (ВТСП) магнитов.
Сроки строительства
Ожидается, что строительство реактора под названием SPARC, который разрабатывается исследователями из Массачусетского технологического института и дочерней компанией Commonwealth Fusion Systems, начнется весной следующего года и займет три или четыре года, заявили исследователи и представители компании.
Хотя остается еще много серьезных проблем, компания заявила, что за строительством последуют испытания и в случае успеха строительство электростанции, которая могла бы использовать термоядерную энергию для выработки электроэнергии, начиная с следующего десятилетия.
Этот амбициозный график намного быстрее, чем у крупнейшего в мире проекта по созданию термоядерной энергии, многонационального проекта на юге Франции под названием ИТЭР. Этот реактор строится с 2013 года, и хотя он не предназначен для выработки электроэнергии, ожидается, что к 2035 году он будет давать реакцию синтеза.
Боб Мамгаард, генеральный директор Commonwealth Fusion и один из основателей компании, сказал, что цель проекта SPARC — вовремя разработать термоядерный синтез, чтобы он сыграл роль в смягчении последствий глобального потепления. «Мы сосредоточены на том, чтобы как можно быстрее получить термоядерную энергию», — сказал он.
Термоядерный синтез, в котором легкие атомы собираются вместе при температурах в десятки миллионов градусов для высвобождения энергии, стал для всего мира способом преодоления последствий производства электроэнергии для изменения климата.
Подобно обычной ядерной электростанции деления, которая расщепляет атомы, термоядерная установка не будет сжигать ископаемое топливо и не будет производить выбросы парниковых газов.
Критика проекта
Несмотря на амбиции проекта, препятствия на пути создания машины, способной создавать термоядерную плазму и управлять клубящимся сверхгорячим облаком атомов, которое повреждает или разрушает все, к чему прикасаются, огромны.
Некоторые ученые, которые десятилетиями работали над термоядерной энергией, говорят, что хотя они с энтузиазмом относятся к перспективам Sparc, график может быть попросту нереальным.
«Чтение этих документов (исследовательских работ — прим. ред.) дает мне ощущение, что у разработчиков будет контролируемая термоядерная термоядерная плазма, о которой мы все мечтаем», — заявил Кэри Форест, физик из Университета Висконсина, который не участвует в проекте. Однако он не уверен, что сроки выполнения проекта реальны.
По словам доктора Мумгаарда, SPARC будет намного меньше, чем ITER — размером с теннисный корт, по сравнению с футбольным полем, — и намного дешевле, чем международный проект, который, по официальным оценкам, обойдется примерно в 22 млрд долларов, но и эта цифра — не предел. Компания Commonwealth Fusion, основанная в 2018 году и насчитывающая около 100 сотрудников, на данный момент привлекла 200 млн долларов на свой проект.
Отличия Sparc от ITER
С тех пор как почти столетие назад начались эксперименты по термоядерному синтезу, перспектива создания практического термоядерного устройства, которое может производить больше энергии, чем используется, оставалась неуловимой.
Но, если верить выводам ученых в The Journal of Plasma Physics проект SPARC добьется успеха и будет производить в 10 раз больше энергии, чем потребляет.
Исследование «подтверждает, что проект, над которым мы работаем, скорее всего, будет работать», — заявил Мартин Гринвальд, заместитель директора Центра плазменных исследований и термоядерного синтеза Массачусетского технологического института и один из ведущих ученых проекта. Доктор Гринвальд является основателем Commonwealth Fusion, но в настоящее время не связан с компанией.
SPARC использует тот же тип устройства, что и ITER: токамак, или камера в форме пончика, внутри которой происходит реакция синтеза. Поскольку облако плазмы такое горячее — горячее, чем Солнце, — его необходимо удерживать магнитными силами.
ИТЭР делает это с помощью огромных электромагнитных катушек, содержащих сверхпроводящие провода, которые необходимо охлаждать жидким гелием.
По словам Гринвальда, SPARC использует преимущества новой электромагнитной технологии, в которой используются так называемые высокотемпературные сверхпроводники, которые могут создавать гораздо более сильное магнитное поле. В результате плазма намного меньше.
Документы показывают, что «этот путь с высоким полем все еще выглядит жизнеспособным», — сказал доктор Гринвальд. «Если мы сможем преодолеть инженерные проблемы, эта машина будет работать так, как мы прогнозируем».
Commonwealth Fusion заявила, что объявит о местонахождении SPARC через несколько месяцев.
Кто еще работает над термоядерной энергией и есть ли надежда?
Commonwealth Fusion — лишь одна из многих компаний, работающих над разработкой и коммерциализацией термоядерной энергии в партнерстве с исследовательскими учреждениями, при поддержке сотен миллионов долларов инвестиций.
Например, компания TAE Technologies, базирующаяся в Южной Калифорнии, работает над конструкцией, в которой используется линейное устройство, которое стреляет двумя облаками плазмы друг в друга для получения термоядерного синтеза.
First Light Fusion, дочерняя компания Оксфордского университета в Англии, использует энергию для сжатия и сжатия термоядерного топлива.
Доктор Форест сказал: используя более сильные магнитные поля, SPARC можно назвать более «консервативным». «Это полностью отличает его от всех стартапов, которые по определению являются более рискованными», — подчеркивает он.
Уильям Дорланд, физик из Университета Мэриленда и редактор журнала The Journal of Plasma Physics, сказал, что журнал попросил представителей некоторых из этих термоядерных проектов «рассказать об их физических основах». По его словам, группа MIT и Commonwealth Fusion быстро согласилась.
«С моей точки зрения, это первая из этих групп, у которой есть частные деньги, которая на самом деле очень ясно говорит о том, что они делают, — сказал доктор Дорланд. — Разумные люди расходятся во мнениях о том, работает ли это. Но я просто счастлив, что они активизировались и рассказывают нам, используя нормальную науку, что происходит», — заключает он.
В конечном итоге каких последствий ждать от разработки термоядерного реактора? Если технологические процессы будут отлажены и контролируемы, это спасет человечество. Чистая энергия от синтеза атомов вместо их деления как минимум обезопасит планету от ядерных отходов.
Что в итоге?
Несмотря на всю опасность и сложность проектов по разработке термоядерного синтеза, непохоже, что у человечества есть какие-то альтернативы. Предел возможностей планеты ограничен, в отличие от потребностей человека. Выполнят ли свои обещания SPARC, ITER или какой-нибудь стартап, покажет время.
Космическое враньё. Почему термоядерный реактор не могут построить уже 50 лет
Эта технология может решить все проблемы жителей Земли. Но она продолжает оставаться скорее фантазией ученых и инженеров, чем спасительным готовым решением.
Введение в термоядерный реактор
Идея выработки энергии на основе «обратного деления», основанная на разности масс, увлекла физиков много лет назад. Проблемой первых термоядерных реакторов или, точнее, того, что было на них похоже, оставалось не только высокое энергопотребление, но и отсутствие реальных результатов.
Для упрощения понимания физики процесса нужно сказать, что термоядерный реактор работает не так, как традиционная АЭС. Внутри термоядерного реактора (токамака) с помощью электричества разогревается специальный газ, который удерживается в тепловом контуре специальными особо мощными магнитами.
Фото: Wikimedia / Oak Ridge National Laboratory / CC BY 2.0
Главная проблема термоядерного реактора состоит в том, что температура газа, разогретого до состояния плазмы, значительно превышает температуру на поверхности Солнца. Показательным примером в этом смысле является китайский термоядерный реактор. Внутри токамака EAST, прозванного «китайским искусственным солнцем», учёные разогрели плазму до ста миллионов градусов. В недрах Солнца газ разогревается всего лишь до 15 млн градусов.
Как работает термоядерный синтез. GIF-анимация: Wikimedia / Anynobody / CC BY-SA 3.0
Ни один из существующих материалов длительный нагрев такой температурой выдержать не может — любой, даже самый прочный сплав, созданный в секретных военных лабораториях, деформируется и превратится в пыль, если реакцию чуть-чуть «передержать». Именно по этой причине термоядерная реакция на данном этапе не длится больше минуты. Китайским учёным, по большому счёту, повезло — они смогли удержать плазму и получить некоторое количество энергии в течение 100 секунд, но затем аварийная защита реактора отключила комплекс из-за перегрева.
Современные термоядерные реакторы воспроизводят процессы, происходящие на Солнце, достигая температур, которые превышают температуру солнечного ядра в 6 раз.
Должен быть маленьким
Портативный термоядерный реактор, который работает на мусорном топливе прямо на борту «ДеЛориана» в фильме «Назад в будущее» — по своей сути не такая уж беспочвенная технологическая выдумка. Фактически, концепция, описанная в фильме, представляет собой идеальную потребительскую модель продукта будущего. Но для того, чтобы создать маленький и портативный реактор, нужно сначала достроить большой, и заставить его работать так, как нужно.
В 2020 году во Франции, несмотря на мировую пандемию коронавируса, началась окончательная сборка корпусов первого термоядерного реактора ITER. Ключевым элементом реактора должен стать герметичный криостат и вакуумная камера, внутри которых будет поддерживаться процесс термоядерного синтеза. Закончить сборку обещают к 2025 году, а первый пуск намечен на 2026–2027 год.
ITER, по мнению многих учёных, — это проект, который обязательно провалится, но закрывать который категорически нельзя. Но тут важно понять, что международные распри даже внутри ЕС и научного сообщества в целом влияют на то, как понимают проблему и устройство термоядерного реактора в мире.
Судите сами. Международная группа учёных, включая российских специалистов, десяток лет доводит ITER до совершенства и не меняют конструкцию «кольцевого» реактора. А потом появляются британские учёные, которые говорят, что сферический реактор проще, лучше, дешевле, эффективнее, и несколько раз демонстрируют расчёты потенциального КПД.
К слову, британцы, считающие ITER бесперспективным, испытывают сразу три реактора разных типов. Первый — Tokamak Energy, основан на классическом понимании принципа получения термоядерной энергии и в некотором смысле копирует решения ITER, только в слегка измененном виде.
Экспериментальный термоядерный реактор ITER. Фото: IOP Publishing / International Atomic Energy Agency / The ITER magnet systems: progress on construction
Второй — совместное решение британского Минэнерго и компании Westinghouse, основанное на быстром реакторе со свинцовым охлаждением.
Третий — небольшой высокотемпературный реактор U-Battery с газовым охлаждением. Он максимально приближен к тому, что демонстрировал Эммет Браун в фильме «Назад в будущее».
Профессор физики Войцех Ковалик пояснил, что из-за такой неразберихи у научного сообщества нет точного понимания и единой концепции развития.
«Конечно не будет никакого коммерческого решения ещё лет 30, не меньше. Не развита сама технология, несмотря на суперкомпьютеры и глубокое понимание механизмов, по которым плазма взаимодействует с реактором. Наука сейчас лишь на первой ступени в истории с термоядерным синтезом. ITER делу не поможет — это большая лаборатория, постройка которой поможет понять, ошибались ученые в понимании плазмы или нет», — говорит Ковалик.
В таких условиях, по словам Ковалика, нет смысла рассуждать ни о больших, ни тем более о маленьких портативных реакторах. Единственным существующим решением в этой области, по словам Ковалика, остается реактор Тони Старка из фильма «Железный человек», хотя и ту технологию дальше эксперимента никуда не выводили.
В теории создания портативного термоядерного реактора максимально преуспел американский физик Сальваторе Сезар Пайс (Salvatore Cezar Pais) из авиационного дивизиона Военно-морского военного центра. Он запатентовал технологию нагрева и удержания плазмы в тепловом контуре с помощью динамического фузора. Устройства, которое быстро вращаются и сильно вибрируют внутри камеры, создавая «концентрированный поток магнитной энергии» (concentrated magnetic energy flux). Но почти сразу публикаций статьи об этом открытии патент засекретили.
Нет общего мнения и по части топлива, которым нужно «топить» термоядерные реакторы. «Свидетели секты изотопов гелия» считают, что сжигание гелия-3 в топке термоядерного реактора первого поколения — это решение на 200–300 лет, пока не придумают что-нибудь получше. Реалисты отвечают расчётами стоимости добычи гелия-3 в лунном грунте и стоимости его доставки на Землю.
Наиболее перспективными в данный момент считают два вида топливных пар: дейтерий-тритий, и гелий-3-бор. Первый вид топлива считается предпочтительным для использования в «базовых» реакторах на начальной стадии развития технологий, вторая топливная сборка понадобится, когда «термояд» освоят в промышленных масштабах.
Вероятный облик завода, добывающего гелий-3 на Луне. Фото: ExplainingTheFuture
Но совсем недавно физики из МТИ протестировали третий вид топлива: дейтерий-водородную топливную сборку, в которую добавляется специальная «присадка». В качестве последней используется хорошо знакомый сторонникам лунной колонизации гелий-3. Изотоп гелия, как выяснилось в ходе экспериментов, ускоряет реакцию и облегчает «течение» плазмы внутри стенок реактора.
В новом типе топлива концентрация гелия-3 составляет меньше одного процента. Но именно ионы газа ускоряют реакцию и снижают количество электроэнергии, необходимой, чтобы «поджечь» термоядерную реакцию.
Главная проблема состоит в том, что практического применения ни одна из этих топливных сборок, как и сами реакторы, могут не увидеть. Сложность кроется там, где всегда рождается множество споров. Бюрократические тонкости и разногласия учёных привели к тому, что до сих пор ни одной страной мира, ни ведущими агентствами по ядерной энергетике (например, МАГАТЭ) не утверждены рекомендованные к испытаниям термоядерные реакторы.
Наука | Научпоп
6.1K постов 68.8K подписчиков
Правила сообщества
ВНИМАНИЕ! В связи с новой волной пандемии и шумом вокруг вакцинации агрессивные антивакцинаторы банятся без предупреждения, а их особенно мракобесные комментарии — скрываются.
Основные условия публикации
— Посты должны иметь отношение к науке, актуальным открытиям или жизни научного сообщества и содержать ссылки на авторитетный источник.
— Посты должны по возможности избегать кликбейта и броских фраз, вводящих в заблуждение.
— Научные статьи должны сопровождаться описанием исследования, доступным на популярном уровне. Слишком профессиональный материал может быть отклонён.
— Видеоматериалы должны иметь описание.
— Названия должны отражать суть исследования.
— Если пост содержит материал, оригинал которого написан или снят на иностранном языке, русская версия должна содержать все основные положения.
Не принимаются к публикации
— Точные или урезанные копии журнальных и газетных статей. Посты о последних достижениях науки должны содержать ваш разъясняющий комментарий или представлять обзоры нескольких статей.
— Юмористические посты, представляющие также точные и урезанные копии из популярных источников, цитаты сборников. Научный юмор приветствуется, но должен публиковаться большими порциями, а не набивать рейтинг единичными цитатами огромного сборника.
— Посты с вопросами околонаучного, но базового уровня, просьбы о помощи в решении задач и проведении исследований отправляются в общую ленту. По возможности модерация сообщества даст свой ответ.
— Оскорбления, выраженные лично пользователю или категории пользователей.
— Попытки использовать сообщество для рекламы.
— Многократные попытки публикации материалов, не удовлетворяющих правилам.
— Нарушение правил сайта в целом.
Окончательное решение по соответствию поста или комментария правилам принимается модерацией сообщества. Просьбы о разбане и жалобы на модерацию принимает администратор сообщества. Жалобы на администратора принимает @SupportComunity и общество пикабу.
Реакция выйдет из под контроля? Кто-то тупой и не знает принципы работы реактора. Токамак взорвется? Вот это новость! А он вообще может, физически и конструктивно?
У нас по СНГ таких изобретателей по типу Сальватора Пайса, которым не разрешают нести факелы добра в народные массы всевозможные монополисты и злые государства, пруд пруди и еще на озеро останется.
Да ещё и копипаста ради плюсиком.
Проблем у термояда по сути две: как удержать плазму и как отвести большое количество образующейся энергии. Сначала больше работали над первой. Сейчас добрались и до второй, хотя первую полностью не решили. Ну ничего, подождём, когда нажмут на кнопку START!
Есть и другие преимущества: радиационная биологическая опасность термоядерных реакторов примерно в тысячу раз ниже, чем реакторов деления; возможность размещения реактора в любом месте; отсутствие «тяжёлых» радиоактивных отходов, которые можно использовать для изготовления «грязных» бомб; физическая невозможность разгона («взрыва») реактора.
Автор нуб и опозорился.
ТС, а ты сам что-нибудь понимаешь из того, что постишь. Взорвется термоядерный реактор, ну что за бред.
Простите, не понял, по какой, все-таки, причине, прогресса до сих пор нет? Можно повторить?
Спасибо за расширение кругозора. Я о таком и не слышала.
А сам термояд мне непонятен. Это не шаг вперед. Это очередная паровая турбина, только двигать ее будет другий «механизм».
Все равно дорого и опасно.
Коммерческого термоядерное не будет НИКОГДА.
Мирная атомная энергетика это, как и почти все созданное в ХХ века, побочный продукт военной ядерной программы. Они заплатили за это.
Кстати, че там с большим гудронным эквалайзером? Хотелось бы в общих чертах понять, о чем они там галдели.
Астрофизики придумали способ красть энергию у черных дыр. Аналогичный механизм может быть причиной формирования джетов
Дело за малым: нужно подобраться к самому горизонту событий и сгенерировать магнитное поле, которое будет определенным образом пересекаться с магнитным полем черной дыры.
Симуляция возникновения рентгеновской вспышки, исходящей от черной дыры / ©NASA, JPL-Caltech
Один из выводов Общей теории относительности: черные дыры обладают колоссальными запасами энергии, которые можно извлечь. Физики потратили немало времени, придумывая подходящие для этого способы. И здесь вопрос не только обеспечения сверхразвитой цивилизации наших далеких потомков электричеством. Если понять, как черные дыры теряют энергию, можно объяснить сразу множество парадоксов и загадочных космических явлений.
Новый подобный механизм предложили два астрофизика — Лука Комиссо (Luca Comisso) из Колумбийского университета (Нью-Йорк, США) и Фелипе Асенжо (Felipe A. Asenjo) из Университета Адольфо Ибаньеса (Саньтьяго, Чили). Свои расчеты они опубликовали в рецензируемом научном журнале Physical Review D Американского физического общества (APS).
Их идея заключается в разбивании и повторном соединении линий магнитного поля черной дыры вблизи горизонта событий. Эта область пространства заполнена своеобразным бульоном из остатков вещества, еще не успевшего окончательно провалиться в бездну, — в основном плазмой. Формируя «косички» из линий магнитного поля и переплетая их друг с другом, можно заставить заряженные частицы ускоряться и приобретать отрицательную энергию либо забирать ее от черной дыры.
Происходит это из-за того, что направляющиеся по переподключенным магнитным линиям частицы двигаются в разных направлениях относительно вращения черной дыры. Те частицы, что направятся против вращения, то есть будут иметь противоположный спин, получат отрицательную энергию и исчезнут навсегда. А имеющие такой же спин ускорятся и смогут вырваться из гравитационного колодца, унося с собой крохотную часть энергии черной дыры. Если требуется построить электростанцию галактического масштаба, остается только уловить эти частицы.
Комиссо сравнивает этот процесс с похудением путем поедания конфет, имеющих отрицательное количество калорий. По его словам, пусть это на первый взгляд и безумно, теория строго научная. Такие процессы могут протекать в эргосфере черной дыры, где даже пространственно-временной континуум вращается вместе с ней на очень большой скорости. Захваченные перепутанными линиями магнитного поля частицы будут разгоняться до скоростей, почти равных скорости света.
Разница в скорости между падающим в результате такого переподключения магнитных линий и вылетающим наружу потоком плазмы и будет показателем количества энергии, которую теряет черная дыра. Примечательно, что теория Комиссо и Асенжо хорошо объясняет явление релятивистских струй — или, как их еще называют, джетов, а также вспышек, исходящих от черных дыр. Это потоки высокоэнергетического излучения, направленные в обе стороны по ее оси вращения. Правда, пока неясно, какие физические явления становятся причиной искажения магнитного поля в естественных условиях.
Пуск новой уникальной российской термоядерной установки планируется на конец 2020 года
МОСКВА, 31 мая /ПРАЙМ/. Пуск новой уникальной российской термоядерной установки токамак Т-15МД, строящейся в Национальном исследовательском центре «Курчатовский институт» и необходимой для развития отечественных проектов по управляемому термоядерному синтезу, планируется на декабрь 2020 года, сообщается в статье в журнале «Вопросы атомной науки и техники. Серия «Термоядерный синтез».
«Физический пуск Т-15МД намечен на декабрь 2020 года»,
Токамак Т-15МД станет не просто первой за последние 20 лет новой термоядерной установкой, построенной в России, но и «центром исследований по программе управляемого термоядерного синтеза, объединяющим научный и технический потенциал различных коллективов страны», отмечается в статье. На установке Т-15МД будут проводится эксперименты и для проекта международного термоядерного энергетического реактора ИТЭР, строящегося во Франции.
Также указывается, что токамак Т-15МД будет иметь рекордные по мировым меркам характеристики, благодаря которым он станет новым инструментом для научных исследований, с помощью которых станет возможным решение широкого спектра физических проблем и дальнейшее развитие технологий термоядерной энергетики. Одной из важнейших составляющих проекта Т-15МД станет получение данных, необходимых для создания термоядерного источника нейтронов на основе токамака.
В последние годы специалисты многих стран, включая Россию, предлагают использовать термоядерные источники нейтронов не только для производства энергии, но и для наработки ядерного «горючего», а также «выжигания» опасных радиоактивных изотопов, накопившихся в отработавшем ядерном топливе (ОЯТ) атомных электростанций. Перечисленные задачи могут решаться с применением так называемых гибридных систем «синтез-деление». Работы по ним в России ведутся совместно Национальным исследовательским центром «Курчатовский институт», предприятиями госкорпорации «Росатом», Российской академией наук и рядом университетов. Токамак Т-15МД станет прототипом большой установки такого типа.
Кроме того, исследования на Т-15МД обеспечат подготовку научных и инженерных кадров для реализации проектов по созданию в России термоядерных реакторов и перспективных гибридных систем на основе токамаков.
Проект токамака Т-15МД реализуется Курчатовским институтом совместно с предприятием «Росатома» «Научно-исследовательский институт электрофизической аппаратуры имени Ефремова» (Санкт-Петербург) и при участии НПО «Группа компаний машиностроения и приборостроения» (Брянск).
Токамак Т-15 — тороидальная установка для магнитного удержания плазмы. Разработана Васмилием Андреевичем Глухих (ныне академик РАН) https://www.pvsm.ru/budushhee-zdes/280162
Эксперты ИТЭР выбрали материал для защиты от потока термоядерных нейтронов в реакторе
Ученые Института ядерной физики им. Г. И. Будкера СО РАН (ИЯФ СО РАН) предложили защищать конструкции токамака ИТЭР (ITER, International Thermonuclear Experimental Reactor) от потока термоядерных нейтронов с помощью керамики из карбида бора. Разные типы этого материала были исследованы на экспериментальных стендах Института, после чего отчет об экспериментах был рассмотрен и утвержден экспертами ИТЭР. Результаты исследования выложены в базу данных ИТЭР.
Международный экспериментальный термоядерный реактор ИТЭР, призванный продемонстрировать возможность использования термоядерной энергии в промышленных масштабах, будет состоять более чем из миллиона элементов, 25 из них – диагностические порт-плаги. Для примера, экваториальный порт-плаг – это 45-тонная конструкция, которая, с одной стороны, защищает оборудование от потока нейтронов и снижает радиационный фон в зонах, требующих доступа специалистов, а с другой – содержит различные диагностические системы для контроля параметров плазмы, то есть, имеет выходы в горячую область реактора.
Стандартный способ радиационной защиты в реакторах (железоводный) по различным показателям в данном случае не подходит. Для защиты оборудования от нейтронов ИЯФ СО РАН был предложен альтернативный способ – использование керамики из карбида бора.
Различные типы керамики из карбида бора. Сканирующая электронная микроскопия.
Старший научный сотрудник ИЯФ СО РАН, кандидат физико-математических наук Андрей Шошин отметил, что железоводный способ защиты, используемый в реакторах деления, не подходит для проекта ИТЭР из-за строгих ограничений по весу всей конструкции. «Нам был нужен очень легкий материал, – пояснил он, – который эффективно захватывает как горячие нейтроны, рожденные в результате термоядерных реакций, так и медленные, рассеянные затем на элементах конструкций. Материалом, отвечающим всем требованиям, оказался бор. Точнее, одно из его самых легких соединений – карбид бора. Чтобы предложить использование керамики из карбида бора в проекте ИТЭР, мы провели элементный анализ, показавший, что материал не содержит запрещенных примесей, и доказали, что его можно использовать в вакууме».
Исследования керамики из карбида бора проводились в вакуумной лаборатории ИЯФ СО РАН. Научный сотрудник ИЯФ СО РАН, кандидат технических наук Алексей Семенов отметил, что материал, используемый для нейтронной защиты, будет находиться в вакууме, получение которого зависит не только от средств откачки, но также и от того, как газ выделяется веществом. «Чтобы показать, как керамика из карбида бора ведет себя в вакууме, – пояснил он, – мы проводили опыты по измерению коэффициента термического газоотделения для двух ее видов – горячепрессованной и свободноспеченной. Новизна экспериментов в том, что этот материал никто и никогда не использовал в вакуумных технологиях (только для создания бронежилетов). Вакуумные свойства керамики из карбида бора были малоизучены».
После проведения опытов с данным материалом ученые ИЯФ СО РАН предоставили отчет в головную организацию проекта ИТЭР, которая утвердила керамику из карбида бора как материал для нейтронной защиты.
«Будкеровский институт принимает участие во многих международных научных проектах, – прокомментировал руководитель диагностического департамента ИТЭР Майкл Уолш, – ИТЭР – не исключение. Перед специалистами из Новосибирска стояла задача – изучить материал, способный обеспечить эффективную радиационную защиту и снизить радиационный фон, при этом не утяжелив конструкцию токамака».
Керамика из карбида бора, отметил Майкл Уолш, будет использоваться в условиях высокого вакуума, поэтому для корректных результатов ученым нужно было решить сложную физическую задачу – измерить коэффициент термического газоотделения карбида бора. «С ней наши коллеги блестяще справились, – прокомментировал он, –Следующая задача – разработать технологию производства керамики из карбида бора для ИТЭР, которая позволит нарабатывать материал в больших объемах по разумной стоимости. Для ИТЭР ключевыми характеристиками при выборе материала были малый вес и способность эффективно поглощать нейтроны. Но керамика из карбида бора может использоваться и в других областях – например, в ядерной промышленности как поглотитель нейтронов, в аэрокосмической отрасли, которой необходимы новые композитные материалы с металлической матрицей, на производствах, где требуются сверхпрочные конструкции».