что дало селекции растений открытие индуцированного мутагенеза

Индуцированный мутагенез, полиплоидия и их использование в селекции растений

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенезаИсходный сорт Новосибирская 7 (слева), мутантный сорт Новосибирская 67 (справа)

Индуцированный мутагенез основан на воздействии различных излучений и химических мутагенов на организм для получения мутаций. Мутагены позволяют получить широкий спектр разнообразных мутаций. Из 1 тыс. искусственно полученных мутаций 1–2 тыс. оказываются полезными. Но в этом случае необходим жесткий индивидуальный отбор мутантных форм и дальнейшая работа с ними.

Методы мутагенеза успешно применяют в селекции растений. Сейчас в мире создано более 1 тыс. сортов, ведущих родословную от отдельных мутантных растений, полученных в результате искусственного мутагенеза. Известный сорт яровой пшеницы Новосибирская 67 был получен в Институте цитологии и генетики СО РАН после обработки семян исходного материала сорта Новосибирская 7 рентгеновскими лучами. Этот сорт обладает короткой и прочной соломиной, что предохраняет растения от полегания в период уборки урожая.

В селекции растений находит широкое применение и метод получения полиплоидных форм. Полиплоидия является разновидностью геномной мутации и заключается в кратном по сравнению с гаплоидным увеличении набора хромосом. Полиплоидные формы можно получить, обрабатывая колхицином семена в период их прорастания.

Кратное увеличение числа хромосом сопровождается возрастанием массы семян и плодов, что ведет к повышению урожайности сельскохозяйственных растений. О роли метода получения полиплоидов в селекции растений красноречиво сказал академик П.М. Жуковский: «Человечество питается и одевается преимущественно продуктами полиплоидии». В России широко распространены экспериментально полученные полиплоидные сорта картофеля, пшеницы, сахарной свеклы, гречихи и других культурных растений.

Источник

Индуцированный мутагенез

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

Экспериментальное получение мутаций у растений и микроорганизмов и их использование в селекции

Эффективными способами получения исходного материала являются методы индуцированного мутагенеза – искусственного получения мутаций. Индуцированный мутагенез позволяет получить новые аллели, которые в природе обнаружить не удается. Например, этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д. Экспериментально полученные мутации у растений и микроорганизмов используют как материал для искусственного отбора. Этим путем получены высокопродуктивные штаммы микроорганизмов (продуцентов антибиотиков), карликовые сорта растений с повышенной скороспелостью и т.д.

Для получения индуцированных мутаций у растений используют физические мутагены (гамма-излучение, рентгеновское и ультрафиолетовое излучение) и специально созданные химические супермутагены (например, N-метил-N-нитрозомочевина).

Дозу мутагенов подбирают таким образом, чтобы погибало не более 30…50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1…3 до 10…15 и даже 50…100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01…0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1 отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы.

Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2…3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5…7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности и/или бесплодию. К немногим исключениям относится тутовый шелкопряд, с которым велась интенсивная селекционная работа с использованием авто- и аллополиплоидов (Б.Л. Астауров, В.А. Струнников).

Соматические мутации. В результате индуцированного мутагенеза часто получают частично мутантные растения (химерные организмы). В этом случае говорят о соматических (почковых) мутациях. Многие сорта плодовых растений, винограда, картофеля являются соматическими мутантами. Эти сорта сохраняют свои свойства, если их воспроизводят вегетативным путем, например, прививая обработанные мутагенами почки (черенки) в крону немутантных растений; таким путем размножают, например, бессемянные апельсины.

Полиплоидия. Как известно, термин «полиплоидия» используется для обозначения самых разнообразных явлений, связанных с изменением числа хромосом в клетках.

Автополиплоидия представляет собой многократное повторение в клетке одного и того хромосомного набора (генома). Автополиплоидия часто сопровождается увеличением размеров клеток, пыльцевых зерен и общих размеров организмов. Например, триплоидная осина достигает гигантских размеров, долговечна, её древесина устойчива к гниению. Среди культурных растений широко распространены как триплоиды (бананы, чай, сахарная свекла), так и тетраплоиды (рожь, клевер, гречиха, кукуруза, виноград, а также земляника, яблоня, арбузы). Некоторые полиплоидные сорта (земляника, яблоня, арбузы) представлены и триплоидами, и тетраплоидами. Автополиплоиды отличаются повышенной сахаристостью, повышенным содержанием витаминов. Положительные эффекты полиплоидии связаны с увеличением числа копий одного и того же гена в клетках, и, соответственно, в увеличении дозы (концентрации) ферментов. Как правило, автополиплоиды менее плодовиты по сравнению с диплоидами, однако снижение плодовитости обычно с лихвой компенсируется увеличением размеров плодов (яблони, груши, винограда) или повышенным содержанием определенных веществ (сахаров, витаминов). В то же время, в ряде случаев полиплоидия приводит к угнетению физиологических процессов, особенно при очень высоких уровнях плоидности. Например, 84-хромосомная пшеница менее продуктивна, чем 42-хромосомная.

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

Аллополиплоидия – это объединение в клетке разных хромосомных наборов (геномов). Часто аллополиплоиды получают путем отдаленной гибридизации, то есть при скрещивании организмов, принадлежащих к различным видам. Такие гибриды обычно бесплодны (их образно называют «растительными мулами»), однако, удваивая число хромосом в клетках, можно восстановить их фертильность (плодовитость). Таким путем получены гибриды пшеницы и ржи (тритикале), алычи и терна, тутового и мандаринового шелкопряда.

Полиплоидия в селекции используется для достижения следующих целей:

– получение высокопродуктивных форм, которые могут непосредственно внедряться в производство или использоваться как материал для дальнейшей селекции;

– восстановление плодовитости у межвидовых гибридов;

– перевод гаплоидных форм на диплоидный уровень.

В экспериментальных условиях образование полиплоидных клеток можно вызвать воздействием экстремальных температур: низкими (0…+8 °С) или высокими (+38…+45 °С), а также путем обработки организмов или их частей (цветков, семян или проростков растений, яйцеклеток или эмбрионов животных) митозными ядами. К митозным ядам относятся: колхицин (алкалоид безвременника осеннего – известного декоративного растения), хлороформ, хлоралгидрат, винбластин, аценафтен и др.

Источник

Искусственный мутагенез

Искусственный мутагенез — новый важный источник создания исходного материала в селекции растений.

Применение ионизирующих излучений и химических мутагенов значительно увеличивает число мутаций. Однако значение экспериментального мутагенеза для селекции растений было понято не сразу.

А. А. Сапегин и Л. Н. Делоне — первые исследователи, показавшие значение искусственных мутаций для селекции растений. В их опытах, проводившихся в 1928—1932 гг. в Одессе и Харькове, была получена целая серия хозяйственно полезных мутантных форм у пшеницы. Несмотря на это, к применению экспериментального мутагенеза в селекции растений длительное время продолжали относиться отрицательно. Лишь в конце 50-х годов к экспериментальному мутагенезу проявили повышенный интерес. Он был связан, во-первых, с крупными успехами ядерной физики и химии, давшими возможность использовать для создания мутаций различные источники ионизирующих излучений и высокореактивные химические вещества, и, во-вторых, с получением этими методами на самых различных культурах практически ценных наследственных изменений.

Особенно широко работы по экспериментальному мутагенезу в селекции растений развернулись в последние годы. Очень интенсивно они ведутся в СССР, Швеции, Японии, США, Индии, Чехословакии, Франции и некоторых других странах. В Институте химической физики АН СССР под руководством И. А. Рапопорта создан центр по химическому мутагенезу, координирующий работу многих сельскохозяйственных научно-исследовательских учреждений, использующих индуцированные мутации в качестве исходного селекционного материала.

Большую ценность представляют мутации, обладающие устойчивостью к грибным и другим заболеваниям. Создание иммунных сортов — одна из главных задач селекции, и в ее успешном решении большую роль должны сыграть методы радиационного и химического мутагенеза.

С помощью ионизирующих излучений и химических мутагенов можно ликвидировать отдельные недостатки у сортов сельскохозяйственных культур и создавать формы с хозяйственно полезными признаками: неполегающие, морозостойкие, холодостойкие, скороспелые, с повышенным содержанием белка и клейковины.

Возможны два основных пути селекционного применения искусственных мутаций: прямое использование мутаций, полученных у самых лучших районированных сортов, и в процессе гибридизации.

В первом случае ставится задача улучшения существующих сортов по некоторым хозяйственно-биологическим признакам, исправления у них отдельных недостатков. Этот метод считается перспективным в селекции на устойчивость к заболеваниям. Предполагается, что у любого ценного сорта можно быстро получить мутации устойчивости и сохранить при этом нетронутыми другие хозяйственно-биологические признаки. Это дало бы возможность селекционерам быстро реагировать на расообразование паразитов.

Метод прямого использования мутаций рассчитан на быстрое создание исходного материала с нужными признаками и свойствами. Однако прямое и быстрое использование мутаций при тех высоких требованиях, которые предъявляются к современным селекционным сортам, далеко не всегда дает положительные результаты. Полученный вследствие мутагенеза исходный материал должен, как правило, пройти через гибридизацию. Это второй путь использования искусственных мутаций. В Краснодарском НИИСХ мутантный сорт ячменя Темп был включен в гибридизацию с контрастным по ряду признаков сортом западноевропейской селекции. Это обусловило огромное генетическое разнообразие форм и появление трансгрессивных линий. Из этих комбинаций был выделен сорт ярового ячменя Каскад, превосходящий исходные формы по урожаю и многим другим признакам.

Мутации могут изменять свое фенотипическое выражение в зависимости от того, в какой генотип они включаются. Особенно это относится к малым физиологическим мутациям. Поэтому скрещивание качественно меняет влияние отдельных мутаций на развитие многих признаков и свойств. Широко применяются также сочетание индуцированного мутагенеза с гибридизацией, обработка мутагенами гибридных семян F0, F1 и старших поколений, скрещивание мутантных форм между собой и с лучшими районированными сортами, беккроссовая гибридизация. Последняя проводится по следующей схеме:

Мутант любой формы с нужным X Данный исходный улучшаемый сорт единичным признаком Fx X Данный исходный улучшаемый сорт 1 X Данный исходный улучшаемый сорт

Используется экспериментальный мутагенез и совместно с отдаленной гибридизацией. Путем искусственных мутаций в ряде случаев удается преодолевать нескрещиваемость разных далеких видов растений, а также проводить пересадку путем транслокации отдельных локусов хромосом диких видов в хромосомный комплекс культурных растений. Так, Э. Сирсу (США) удалось перенести от эгилопса в геном пшеницы очень небольшой кусочек хромосомы, контролирующий устойчивость к ржавчине. В результате была получена нормально плодовитая форма, ничем не отличающаяся от пшеницы, но обладающая благодаря проведенной транслокации устойчивостью к ржавчине. Аналогичным путем Ф. Эллиот перенес от пырея в геном пшеницы локусы устойчивости к стеблевой ржавчине и головне.

Исключительный интерес представляет эксперимент Г. Штуббе (ГДР) по улучшению дикого мелкоплодного помидора в процессе мутагенеза. Путем многократного пятиступенчатого облучения лучами Рентгена и отбора он довел крупность плодов у этой формы до нормальных размеров.

Рядом исследователей установлено, что мутабильность отдаленных гибридов значительно выше, чем внутривидовых и обычных линейных сортов. Многочисленные опыты показали, что частота и характер возникающих мутаций в равной степени зависят как от вида мутагенов, так и от наследственности исходного сорта.

Выбор исходного сорта для получения мутаций так же важен, как подбор родительских пар при гибридизации. Для создания нужных мутаций необходимо учитывать способность сортов к образованию тех или иных мутаций, а также частоту их возникновения. Выявлено, что чем ближе сорта по своему происхождению и генотипу, тем они более сходны в частоте и характере возникающих мутаций, и, наоборот, чем генетически сорта менее родственны, тем более они различаются по мутационной изменчивости. Таким образом, закономерности искусственного мутагенеза у различных сортов подчиняются закону гомологических рядов в наследственной изменчивости.

Для получения хозяйственно ценных мутаций наиболее широко применяются гамма-лучи, лучи Рентгена и нейтроны, а из химических мутагенов — алкилирующие соединения: этиленимин, нитрозоэтилмочевина, этилметансульфонат и др.

Концентрация химических мутагенов и дозы ионизирующих излучений не должны быть очень высокими. Для облучения семян гамма-лучи и лучи Рентгена применяют в дозах от 5 до 10 кР; облучение быстрыми нейтронами проводят при дозах от 100 до 1000 рад. Если облучению подвергается пыльца, дозу уменьшают в 1,5—2 раза.

Химические мутагены обычно используют в виде водных растворов 0,05—0,2 %-ной концентрации при продолжительности намачивания семян от 12 до 24 ч. При этом обеспечивается лучшее выживание растений и сохранение среди них мутаций с хозяйственно полезными признаками. Не следует допускать большого разрыва во времени между обработкой семян и их посевом, так как в противном случае может снизиться всхожесть и возрасти повреждающий эффект. Чтобы снизить повреждающее действие мутагенов, обработанные семена рекомендуется промывать в проточной воде.

Различные поколения растений, полученных из семян от воздействия мутагенами, обозначают буквой М с соответствующими цифровыми индексами: М-1 — первое поколение, М-2 — второе и т. д.

Для получения хозяйственно полезных мутаций у какого-либо сорта рекомендуется подвергать мутагенному воздействию от 2 до 4 тыс. семян. Отбор мутаций чаще всего проводят в М2. Но так как в М1 выявляются не все мутации, его повторяют в М2. Иногда отбор начинают и в М1. В этом случае отбирают доминантные мутации, а также высокопродуктивные растения для последующего отбора в их потомстве генных мутаций, не связанных с хромосомными перестройками.

Первое поколение мутантов выращивают при оптимальных условиях питания и увлажнения. Растения М1 обмолачивают отдельно или совместно. При раздельном обмолоте во втором поколении высевают индивидуальные потомства (семьи) отдельных растений, что облегчает выделение мутаций с хозяйственно полезными признаками. Во втором поколении отбирают мутанты с хорошо выраженными ценными признаками и растения для получения малых мутаций в следующем поколении. В дальнейшем мутации подвергаются отбору или используются в скрещиваниях между собой или с сортами.

К настоящему времени в мире создано много мутантных сортов сельскохозяйственных растений. Некоторые из них имеют существенные преимущества в сравнении с исходными сортами. Ценные мутантные формы пшеницы, кукурузы, сон и других полевых и овощных культур получены в последние годы в научно — исследовательских учреждениях нашей страны. Районированы мутантные сорта озимой пшеницы Киянка, яровой пшеницы Новосибирская 67, ячменя Минский, Темп, Дебют, сои Универсал, люпина Киевский скороспелый, Горизонт и Днепр с повышенным содержанием белка, овса Зеленый, фасоли Санарис 75 и других культур.

Во Всесоюзном НИИ масличных культур впервые в мировой селекции методом химического мутагенеза создан сорт подсолнечника Первенец (оливковый мутант), в масле которого содержится до 75 % олеиновой кислоты. По качеству оно не уступает маслу, добываемому из плодов субтропического вечнозеленого оливкового дерева. Многие мутантные сорта в настоящее время изучаются в производственных условиях и испытываются на сортоучастках Госкомиссии по сортоиспытанию сельскохозяйственных культур.

Особое внимание селекционеров привлекает использование мутаций карликовости. С этой проблемой во многих странах связано осуществление селекционных программ по созданию короткостебельных сортов зерновых культур интенсивного типа, способных при орошении и внесении высоких доз минеральных удобрений давать урожай зерна 100 ц/га и выше. Одним из наиболее ценных доноров короткостебельности у пшеницы оказался старый японский озимый сорт Norin 10, обладающий тремя парами спонтанно возникших рецессивных генов карликовости dw (от англ. dwarf — карлик) с неравнозначным эффектом (dwx>dw2>dwz).

Если обычный сорт имеет высоту стебля более 150 см, у полукарликовых сортов с одним геном карликовости высота стебля составляет 100—110 см, а у сортов с двумя и тремя генами карликовости соответственно 70—90 и 45—50 см.

Исключительно эффективной оказалась работа по созданию короткостебельных сортов пшеницы с использованием генов Norin 10 в Мексиканском международном центре по улучшению пшеницы и кукурузы (СИММИТ). Во многих странах на основе мексиканских карликовых пшениц созданы собственные приспособленные к местным условиям короткостебельные сорта интенсивного типа.

Наряду с рецессивными генами карликовости сорта Norin 10 в селекции сортов интенсивного типа используют доминантные гены, носителями которых являются тибетская пшеница Тот Роисе (Том Пус) и родезийский сорт Olsen Dwarfs. Эти гены снижают высоту стебля у пшеницы еще сильнее, чем рецессивные. Используя их, можно создавать ультранизкорослые трехгенные карликовые сорта с высотой стебля 30—35 см. Предполагается, что получение таких сортов позволит поднять урожайный потенциал пшеницы в условиях очень интенсивной культуры земледелия до 150 ц/га и выше. В Краснодарском НИИСХ путем химического мутагенеза получены карликовые мутанты из сортов озимой пшеницы Безостая 1 и Мироновская 808. Карликовые мутанты Безостой 1, имеющие хорошие качества зерна и более высокую зимостойкость, широко используются в гибридизации.

На основе мутанта Краснодарский карлик за 6 лет выведен неполегающий сорт озимой пшеницы интенсивного типа Полукарликовая 49. Для получения высокопродуктивных сортов озимой ржи селекционными учреждениями нашей страны успешно используется естественный мутант EM-I, несущий доминантный ген короткостебельности.

С помощью карликовых мутантов риса удалось создать сорта, устойчивые к полеганкю, отзывчивые на высокие дозы минеральных удобрений, а также отличающиеся благодаря нейтральной фотопериодической реакции высокой пластичностью.

Ценные мутантные сорта ячменя получены в Австрии, ФРГ, ГДР, США, Чехословакии, Швеции. В Краснодарском НИИСХ путем химического мутагенеза из сорта озимого ячменя Завет получен устойчивый к полеганию полукарлик 55М1. В этом же институте получен гигантский широколистный толстостебельный мутант овса и на его основе создан сорт Зеленый, дающий очень высокий урожай кормовой массы.

Используется мутагенез и для получения карликовых гибридов кукурузы. У таких гибридов предполагается повысить урожайность и ускорить созревание за счет снижения затрат питательных веществ и воды на рост стебля, что одновременно позволит выращивать их при значительно большей густоте стояния растений и применять в повторных посевах.

Исключительно велико значение биохимических мутаций. Так, у кукурузы спонтанные мутации белкового комплекса opaque-2 (тусклый-2) и floury-2 (мучнистый-2) послужили основой для создания гибридов с высоким содержанием незаменимых аминокислот. Рецессивный ген увеличивает содержание лизина в различных генотипах в 1,5—2 раза. Полудоминантный ген fl2 обладает такой способностью в меньшей степени, под его контролем значительно повышается содержание метионина. При этом сокращается количество зеина и увеличивается содержание других белков, более богатых указанными аминокислотами. В нашей стране созданы первые высоколизиновые гибриды кукурузы Краснодарский 82ВЛ, Краснодарский 303ВЛ, Геркулес Л. В их белке содержится примерно в 1,5 раза больше лизина, чем у обычных гибридов. Животные на откорме зерном высоколизиновых гибридов кукурузы значительно увеличивают привесы, а затраты кормов при этом намного ниже, чем при рационах с обычной кукурузой.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

что дало селекции растений открытие индуцированного мутагенеза. Смотреть фото что дало селекции растений открытие индуцированного мутагенеза. Смотреть картинку что дало селекции растений открытие индуцированного мутагенеза. Картинка про что дало селекции растений открытие индуцированного мутагенеза. Фото что дало селекции растений открытие индуцированного мутагенеза

ИСПОЛЬЗОВАНИЕ ИНДУЦИРОВАННОГО МУТАГЕНЕЗА В СЕЛЕКЦИИ РАСТЕНИЙ

Для получения индуцированных мутаций у растений используют самые различные мутагены. Дозу этих мутагенов подбирают таким образом, чтобы погибало не более 30-50% обработанных объектов. Например, при использовании ионизирующего излучения такая критическая доза составляет от 1-3 до 10-15 и даже 50-100 килорентген. При использовании химических мутагенов применяют их водные растворы с концентрацией 0,01-0,2%; время обработки – от 6 до 24 часов и более.

Обработке подвергают пыльцу, семена, проростки, почки, черенки, луковицы, клубни и другие части растений. Растения, выращенные из обработанных семян (почек, черенков и т.д.) обозначаются символом M1 (первое мутантное поколение). В M1отбор вести трудно, поскольку большая часть мутаций рецессивна и не проявляется в фенотипе. Кроме того, наряду с мутациями часто встречаются и ненаследуемые изменения: фенокопии, тераты, морфозы. Поэтому выделение мутаций начинают в M2 (втором мутантном поколении), когда проявляется хотя бы часть рецессивных мутаций, а вероятность сохранения ненаследственных изменений снижается. Обычно отбор продолжается в течение 2-3 поколений, хотя в некоторых случаях для выбраковки ненаследуемых изменений требуется до 5-7 поколений (такие ненаследственные изменения, сохраняющиеся на протяжении нескольких поколений, называют длительными модификациями).

Полученные мутантные формы или непосредственно дают начало новому сорту (например, карликовые томаты с желтыми или оранжевыми плодами) или используются в дальнейшей селекционной работе.

Однако применение индуцированных мутаций в селекции все же ограничено, поскольку мутации приводят к разрушению исторически сложившихся генетических комплексов. У животных мутации практически всегда приводят к снижению жизнеспособности или бесплодию. Поэтому в селекции стараются использовать уже известные мутации, которые прошли испытание естественным отбором.

Радиационные мутагены обычно вызывают широкий спектр мутаций, но обладают меньшей направленностью действия, чем различные химические мутагены, у которых доля полезных мутаций значительно выше (30—60% и более). Среди мутантов, полученных при помощи химических веществ, чаще обнаруживаются формы с полезными изменениями нескольких признаков или свойств.

В закрытом эксикаторе создается атмосфера, насыщенная парами мутагена, который легко проникает в семена. Химическими мутагенами обрабатывают также черенки, клубни, вводят их в стебель растения и т. д.

Количество и ценность возникающих мутаций зависят от вида облучения или химического мутагена, от дозы облучения и концентрации мутагенов, от состояния объекта обработки и от условий облучения (температуры, влажности и т. д.). На знании этих особенностей основана разработка приемов снижения повреждающего эффекта мутагенов.

Мутабильность зависит и от генотипа растения. Разные сорта дают неодинаковый процент мутантов при обработке одним и тем же мутагеном.

Для выявления мутантов обработанные семена высевают и в первом поколении (M1) отбирают доминантные мутации, но они редки. Рецессивные мутации выявляют в М2 и М3. Растения с ценными отклонениями отбирают и проверяют по потомству обычными методами. Менее трудоемок метод пересева. При этом семена без отборов пересевают несколько раз, а после прекращения расщепления отбирают растения, которые затем проверяют по потомству. Перекрестное опыление создает дополнительные затруднения при выявлении мутаций.

Список литературы:

1) Айала Ф., Кайгер Дж. Современная генетика 3 тома. М., «Мир»,1988г.

2) Алиханян С.И., А.П. Акифьев, Л.С. Чернин. Общая генетика: Учеб. для студ. биол. спец. ун-тов. М.: Высшая школа, 1985.

3) Грин Н., Стаут У., Тейлор Д., Биология 3 тома, М, «Мир», 1990г.

4) Дубинин Н. П., Общая генетика, М., 1970.

5) Лобашев М. Е., Ватти К.В., Тихомирова М.М. Генетика с основами селекции, М. Просвещение, 1979.

6) Сойфер В. Н. Молекулярные механизмы мутагенеза, М., 1969.

7) Филипченко Ю. А. Изменчивость и методы ее изучения, Л., 1926.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *