чем различаются компиляция и интерпретация
Чем различаются компиляция и интерпретация
Под трансляцией в самом широком смысле можно понимать процесс восприятия компьютером программы, написанной на некотором формальном языке. При всем своем различии формальные языки имеют много общего и, в принципе, эквиваленты с точки зрения потенциальной возможности написать одну и ту же программу на любом из них.
На самом деле сложно подвести под одну схему имеющееся многообразие языков программирования,
Следовательно, компиляция и интерпретация отличаются не характером и методами анализа и преобразования объектов программы, а совмещением фаз обработки этих объектов во времени. То есть при компиляции фазы преобразования и выполнения действий разнесены во времени, но зато каждая из них выполняется над всеми объектами программы одновременно. При интерпретации, наоборот, преобразование и выполнение действий объединены во времени, но для каждого объекта программы.
для выполнения программы, написанной на определенном формальном языке после ее компиляции необходим интерпретатор, выполняющий эту программу, но уже записанную на выходном языке компилятора;
процессор и память любого компьютера (а в широком смысле и вся программная среда, создаваемая операционной системой, является интерпретатором машинного кода);
в практике построения трансляторов часто встречается случай, когда программа компилируется с входного языка на некоторый промежуточный уровень (внутренний язык), для которого имеется программный интерпретатор. Многие языковые системы программирования, называемые интерпретаторами, на самом деле имеют фазу компиляции во внутренне представление, на котором производится интерпретация.
Выходной язык компилятора может быть машинным языком для компьютера с другой архитектурой, нежели тот, в котором работает компилятор. Такой компилятор называется кросс-компилятором, а сама система программирования кросс-системой программирования. Такие системы используются для разработки программ для архитектур, не имеющих собственных операционных систем или систем программирования (контроллеры, управляющие микропроцессоры).
Таким образом, граница между компиляцией и интерпретацией в трансляторе может перемещаться от входного языка (тогда мы имеем чистый интерпретатор) до машинного кода (тогда речь идет о чистом компиляторе).
Создание слоя программной интерпретации для некоторого промежуточного языка в практике построения трансляторов обычно встречается при попытке обеспечить совместимость для имеющегося многообразия языков программирования, операционных систем, архитектур и т.д. То есть определяется некоторый внутренний промежуточный язык, достаточно простой, чтобы для него можно было написать интерпретатор для всего имеющегося многообразия операционных систем или архитектур. Затем пишется одни (или несколько) компиляторов для одного (или нескольких) входных языков на этот промежуточный уровень. Приведем примеры такой стандартизации:
Основные принципы программирования: компилируемые и интерпретируемые языки
Как и в предыдущей статье этого цикла, я хочу обратить ваше внимание на ключевые принципы программирования, которые влияют на всё то, что мы делаем, но с которыми мы редко сталкиваемся напрямую и поэтому не до конца их понимаем. Тема сегодняшней статьи — компилируемые и интерпретируемые языки.
Будучи разработчиками, мы часто сталкиваемся с такими понятиями, как компилятор и интерпретатор, но я считаю, что многие не совсем понимают, что они означают. Между тем, компиляция и интерпретация — это основы работы всех языков программирования. Давайте взглянем на то, как на самом деле устроены эти понятия.
Вступление
Мы полагаемся на такие инструменты, как компиляция и интерпретация, чтобы преобразовать наш код в форму, понятную компьютеру. Код может быть исполнен нативно, в операционной системе после конвертации в машинный (путём компиляции) или же исполняться построчно другой программой, которая делает это вместо ОС (интерпретатор).
Компилируемый язык — это такой язык, что программа, будучи скомпилированной, содержит инструкции целевой машины; этот машинный код непонятен людям. Интерпретируемый же язык — это такой, в котором инструкции не исполняются целевой машиной, а считываются и исполняются другой программой (которая обычно написана на языке целевой машины). Как у компиляции, так и у интерпретации есть свои плюсы и минусы, и именно это мы и обсудим.
Прежде чем мы продолжим, стоит отметить, что многие языки программирования имеют как компилируемую, так и интерпретируемую версии, поэтому классифицировать их затруднительно. Тем не менее, чтобы не усложнять, в дальнейшем я буду разделять компилируемые и интерпретируемые языки.
Компилируемые языки
Главное преимущество компилируемых языков — это скорость исполнения. Поскольку они конвертируются в машинный код, они работают гораздо быстрее и эффективнее, нежели интерпретируемые, особенно если учесть сложность утверждений некоторых современных скриптовых интерпретируемых языков.
Низкоуровневые языки как правило являются компилируемыми, поскольку эффективность обычно ставится выше кроссплатформенности. Кроме того, компилируемые языки дают разработчику гораздо больше возможностей в плане контроля аппаратного обеспечения, например, управления памятью и использованием процессора. Примерами компилируемых языков являются C, C++, Erlang, Haskell и более современные языки, такие как Rust и Go.
Проблемы компилируемых языков, в общем-то, очевидны. Для запуска программы, написаной на компилируемом языке, её сперва нужно скомпилировать. Это не только лишний шаг, но и значительное усложнение отладки, ведь для тестирования любого изменения программу нужно компилировать заново. Кроме того, компилируемые языки являются платформо-зависимыми, поскольку машинный код зависит от машины, на которой компилируется и исполняется программа.
Интерпретируемые языки
В отличие от компилируемых языков, интерпретируемым для исполнения программы не нужен машинный код; вместо этого программу построчно исполнят интерпретаторы. Раньше процесс интерпретации занимал очень много времени, но с приходом таких технологий, как JIT-компиляция, разрыв между компилируемыми и интерпретируемыми языками сокращается. Примерами интерпретируемых языков являются PHP, Perl, Ruby и Python. Вот некоторые из концептов, которые стали проще благодаря интерпретируемым языкам:
Основным недостатком интерпретируемых языком является их невысокая скорость исполнения. Тем не менее, JIT-компиляция позволяет ускорить процесс благодаря переводу часто используемых последовательностей инструкции в машинный код.
Бонус: байткод-языки
В байткод-языке сперва происходит компиляция программы из человекочитаемого языка в байткод. Байткод — это набор инструкций, созданный для эффективного исполнения интерпретатором и состоящий из компактных числовых кодов, констант и ссылок на память. С этого момента байткод передаётся в виртуальную машину, которая затем интерпретирует код также, как и обычный интерпретатор.
При компиляции кода в байткод происходит задержка, но дальнейшая скорость исполнения значительно возрастает в силу оптимизации байткода. Кроме того, байткод-языки являются платформо-независимыми, превосходя при этом по скорости интерпретируемые. Для них также доступна JIT-компиляция.
Заключение
Многие языки в наши дни имеют как компилируемые, так и интерпретируемые реализации, сводя разницу между ними на нет. У каждого вида исполнения кода есть преимущества и недостатки.
Вкратце, компилируемые языки являются самыми эффективными, поскольку они исполняются как машинный код и позволяют использовать аппаратное обеспечение системы. Однако это вводит дополнительные ограничение на написание кода и делает его платформо-зависимым. Интерпретируемые же языки не зависят от платформы и позволяют использовать такие техники динамического программирования, как метапрограммирование. Тем не менее, в скорости исполнения они значительно уступают компилируемым языкам.
Байткод-языки, в свою очередь, пытаются использовать сильные стороны обоих видов языков, и у них это неплохо получается.
Компилятор VS интерпретатор: ключевые отличия
Интерпретаторы и компиляторы отвечают за преобразование языка программирования или сценариев (язык высокого уровня) в машинный код. Но если обе программы делают одно и то же, чем они различаются? Давайте разберемся.
Компилятор
Что такое компилятор?
Компилятор — это компьютерная программа, которая переводит компьютерный код с одного языка программирования на другой. Компилятор берет программу целиком и преобразует ее в исполняемый компьютерный код. Для этого требуется целая программа, так как компьютер понимает только то, что написано двоичным кодом. Задача компилятора — преобразовать исполняемую программу в машинный код, который и распознается компьютером. Примерами скомпилированных языков программирования являются C и C++.
Компилятор в основном используется для программ, которые переводят исходный код с языка программирования высокого уровня на язык программирования более низкого уровня.
Компилятор способен выполнять многие или даже все операции: предварительную обработку данных, парсинг, семантический анализ, преобразование входных программ в промежуточное представление, оптимизацию и генерацию кода.
Интерпретатор
Что такое интерпретатор?
Интерпретатор — это компьютерная программа, которая преобразует каждый программный оператор высокого уровня в машинный код. Сюда входят исходный код, предварительно скомпилированный код и сценарии.
Интерпретатор представляет собой машинную программу, которая непосредственно выполняет набор инструкций без их компиляции. Примерами интерпретируемых языков являются Perl, Python и Matlab.
Как это работает?
Интерпретатор создает программу. Он не связывает файлы и не генерирует машинный код. Происходит построчное выполнение исходных операторов во время исполнения программы.
Преимущества и недостатки
Преимущества компилятора
Недостатки компилятора
Преимущества интерпретатора
Недостатки интерпретатора
Различия
Рассмотрим основные различия между компилятором и интерпретатором
Что такое компиляция в программировании?
Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.
Рабочий цикл программы
При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это « запускаемая » часть программы.
Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения « a = 3; » получить закодированные инструкции, которые процессор может понять?
Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.
На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:
Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.
Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.
Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в « интерпретирующей » среде, а Python всегда должен интерпретироваться.
Интерпретация программы
Альтернативой компиляции является интерпретация. Чем отличаются компиляторы и интерпретаторы? Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.
Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.
Другими словами, программа-интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.
Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:
На ней мы видим, что в отличии от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются « скриптами », потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.
Природа интерпретатора
Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.
Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.
Такой код быстрее обрабатывается, и его проще написать для исполнителя ( части интерпретатора, которая исполняет ), который считывает байтовый код, а не код источника.
Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java « запускается » на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.
За и против
Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.
Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.
Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.
С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.
Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.
Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.
Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.
Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами ( JIT ). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.
Заключение
Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.
Сообщите мне, что бы вы предпочли: интерпретацию или компиляцию? Спасибо за уделенное время!
Пожалуйста, оставьте ваши комментарии по текущей теме статьи. Мы крайне благодарны вам за ваши комментарии, дизлайки, подписки, отклики, лайки!
Пожалуйста, оставляйте свои отзывы по текущей теме статьи. За комментарии, дизлайки, подписки, отклики, лайки огромное вам спасибо!
Компиляция и интерпретация
Вы будете перенаправлены на Автор24
Компиляция и интерпретация — это переформирование программы, которая выполнена на каком-либо программном языке, в машинные исполняемые коды, и проработка программы по одной команде без предварительного компилирования.
Главной характеристикой, например, языка программирования РНР, считается его интерпретируемость. Вместе с тем, программные языки, аналогичные Си, проектировались специально как компилируемые. Здесь следует заметить, что фактически сами языки программирования не определяют компиляция им требуется или интерпретация. Практически все программные языки могут подвергаться интерпретации или компиляции посредством соответствующих программ.
Компиляция программы
В любом языке программирования есть некоторые рабочие процедуры формирования кода. Программист пишет программу, запускает её, ищет ошибки и устраняет их, то есть выполняет отладку программы, исправляя и добавляя некоторые коды. Это и есть исполняемая программная часть. Цель программиста, составить так программу, чтобы все её операции успешно исполнялись компьютером.
Компьютер выполняет обработку команд исполняемой программы при помощи процессора, поочерёдно выполняющем процедуры, представленные в двоичных кодах. То есть необходимо сначала преобразовать, к примеру, выражение «Х=5», в кодовые последовательности, понятные процессору. Эту задачу выполняет процесс компиляции при помощи специальных программных приложений, именуемых компиляторами. Компилятор получает, написанную программистом на выбранном им языке, программу, выполняет её подробный анализ и разборку всех участков программы. И затем уже, на основании анализа, формирует программу в машинных кодах процессора.
Часто такую сформированную программу именуют «объектный код».
На каком-то шаге компиляции в работу подключается компоновщик, который принимает уже преобразованные ранее в машинные коды участки программы, и собирает их в единый файл, подлежащий в дальнейшем исполнению, то есть это и будет исполняемый файл. Когда программист запускает этот файл на компьютере, процессор выбирает из него начальную инструкцию и теперь просто её исполняет без всяких добавочных преобразований. Это и есть основное свойство операции компиляции, то есть её итогом является выдача исполняемого файла, который не требует больше никаких дополнительных действий и преобразований. Процессор понимает его коды, принимает их, и поочерёдно исполняет заложенные в них инструкции.
Готовые работы на аналогичную тему
Первые программы компиляции писались прямо в машинных кодах или на языке ассемблера. Но цель была именно такая, преобразовать прикладную программу в набор исполняемых машинных кодов, понятных конкретному процессору. Отдельные программные языки изначально проектировались под дальнейшую процедуру компиляции. Язык Си, к примеру, был спроектирован для предоставления возможности программисту легко осуществлять задуманные операции. Но при этом проектировщики языка Си предусмотрели облегчение перевода программного приложения в машинные коды. Следует заметить, что далеко не все программные языки закладывают такой подход в свою базу. К примеру, Python подлежит только интерпретации, а язык Java был предназначен для использования в среде интерпретации.
Интерпретация программы
Альтернативным компиляции, считается метод интерпретации. Главное отличие между компиляцией и интерпретацией заложено в принципе их работы. При компиляции загружается всё программное приложение, и оно проходит процедуру преобразования в машинные коды, понятные процессору. Программа интерпретации является исполняемым файлом, который последовательно считывает символику команд программного приложения и немедленно осуществляет исполнение, зашифрованных в них инструкций. То есть, фактически, интерпретатор исполняет программу, разработанную программистом, как участок своего исполняемого файла. Машинные коды не пересылаются процессору, поскольку программа интерпретации сама уже написана в машинных кодах и построена так, что её возможно вызывать в нужное время. Если компилятор одноразово преобразует программу и на этом его функции заканчиваются, то интерпретатор работает при каждом запуске программного приложения.