чем прошить атмегу 8
Простейший программатор для ATmega8
А чтобы залить нужную прошивку в АТМЕГу, никак не обойтись без программатора. Далее мы рассмотрим две самые простые и проверенные временем схемы программаторов.
Схема первая
С помощью этого программатора можно прошивать практически любой AVR-контроллер от ATMEL, надо только свериться с распиновкой микросхемы.
На всякий случай привожу разводку печатной платы для атмеги8 (скачать), хотя такую примитивную схему проще нарисовать от руки. Плату перед печатью нужно отзеркалить.
Файл печатной платы открывать с помощью популярной программы Sprint Layout (если она у вас еще не установлена, то качайте 5-ую версию или лучше сразу 6-ую).
Как понятно из схемы, для сборки программатора потребуется ничтожно малое количество деталек:
Вместо КТ315 я воткнул SMD-транзистор BFR93A, которые у меня остались после сборки микромощных радиомикрофонов.
А вот весь программатор в сборе:
Питание (+5В) я решил брать с USB-порта.
Если у вас новый микроконтроллер (и до этого никто не пытался его прошивать), то кварц с сопутствующими конденсаторами можно не ставить. Работа без кварцевого резонатора возможна благодаря тому, что камень с завода идет с битом на встроенный генератор и схема, соответственно, тактуется от него.
Если же ваша микросхема б/у-шная, то без внешнего кварца она может и не запуститься. Тогда лучше ставьте кварц на 4 МГц, а конденсаторы лучше на 33 пФ.
Как видите, я кварц с конденсаторами не ставил, но на всякий случай предусмотрел под них места на плате.
Заливать прошивку лучше всего с помощью программы PonyProg (скачать).
Прошивка с помощью PonyProg
Вот и все, МК прошит и готов к использованию!
Имейте в виду, что при прошивке с помощью других программ (не PonyProg) биты могут быть инверсными! Тогда их надо выставлять с точностью до наоборот. Определить это можно, считав фьюзы и посмотрев на галку «SPIEN».
Схема вторая
Все это можно собрать навесным монтажом прямо на разъеме, но если вы крутой паяльник и знаете, что такое smd-монтаж, то можете сделать красиво:
Алгоритм прошивки с помощью программатора Громова
Программатор с установленной микросхемой подключаем к СОМ-порту компьютера, затем запускаем Uniprof, затем подаем питание на микроконтроллер. И первым делом проверяем, читаются ли фьюз-биты.
Если все ок, выбираем файл с нужной прошивкой и жмем запись.
Программирование микроконтроллеров AVR с помощью Arduino на примере ATmega8
Далеко не во всех проектах целесообразно использовать Ардуинку целиком, иногда достаточно всего нескольких выводов микроконтроллера, да и интегрировать её в схему не всегда удобно. В таких случаях разумно совместить простоту и удобство среды программирования Arduino IDE и дешевизну и малый размер «голого» микроконтроллера, тем более, что прошивать такие МК можно непосредственно с помощью Ардуинки.
В семействе AVR огромное множество микроконтроллеров на любой вкус. Для стандарт tinyAVR (ATtinyxxx) характерны небольшое количество флеш-памяти (до 16 килобайт) и количество линий ввода-вывода в совокупности с низким энергопотреблением, а для стандарта megaAVR (ATmegaxxx) доступно уже до 256 килобайт памяти и до сотни портов ввода-вывода (зависит от модели МК), так же доступна расширенная система команд и периферийных устройств. Сегодня будем прошивать ATmega8, цифра 8 в названии говорит нам о том, что у этого микроконтроллера 8 килобайт встроенной памяти. На картинке ниже расписаны выводы микроконтроллера в DIP корпусе. Кстати у ATmega48/88/168/328 выводы расположены аналогичным образом.
Для прошивки нашего микроконтроллера понадобятся его порты последовательного периферийного интерфейса (SPI — Serial Peripheral Interface) — это синхронный протокол последовательной передачи данных, используемый для связи микроконтроллера с одним или несколькими периферийными устройствами. В нашем случае это выводы:
В первую очередь необходимо из ардуинки сделать программатор, в этом нет ничего сложного, нужно просто загрузить в неё код из готового примера «ArduinoISP».
После его загрузки в плату (кстати я буду использовать Arduino UNO для наглядности, но это не принципиально, можно и другую) в меню Инструменты — >>Программатор необходимо выбрать «Arduino as ISP».
Дальнейшие действия по подключению МК к Ардуинке описаны в комментариях к коду который мы в неё загрузили, а именно подключаем следующие пины:
Дополнительно подключим на нулевой цифровой выход ATmega8 (вторая ножка микросхемы) светодиод через токоограничивающий резистор на 220 Ом, для наглядного подтверждения того, что микроконтроллер работает.
// Put an LED (with resistor) on the following pins:
// 9: Heartbeat — shows the programmer is running
// 8: Error — Lights up if something goes wrong (use red if that makes sense)
// 7: Programming — In communication with the slave
Как видно из описания примера «Arduino ISP» к 7, 8 и 9-му пинам платы Ардуино можно подключить информационные светодиоды (через резисторы) отображающие ход работы программатора, но это по желанию.
Теперь почти всё готово, осталось только сообщить среде программирования, что именно мы собираемся прошивать. Для этого нужно добавить нашу ATmega8 в среду разработки Arduino IDE, тоесть нужно установить так называемое ядро, или как оно называется в самой IDE – плату.
MiniCore – ядро для поддержки микроконтроллеров ATmega328, ATmega168, ATmega88, ATmega48 и ATmega8, для его установки нажимаем Файл —>> Настройки и в открывшемся окне ищем строчку: «Дополнительные ссылки для менеджера плат:», в это поле необходимо ввести ссылку:
Далее заходим в Инструменты —>> Плата —>> Менеджер плат находим и устанавливаем нужное ядро.
После всех манипуляций в менеджере плат должно появиться следующее:
В качестве платы выбираем нашу ATmega8, параметр «Clock:» устанавливаем «Internal 8 MHz», так МК будет работать от внутреннего генератора.
Все готово! Теперь подключаем плату Ардуино к компьютеру и не забыв выбрать нужный COM порт, выбираем в меню «Инструменты» пункт «Записать загрузчик».
Теперь МК знает от какого генератора и на какой частоте ему работать, можно загружать в него свои программы. Для примера загрузим классическую мигалку, только поменяем порт вывода на нулевой (вторая нога МК), именно к нему по схеме мы подключили светодиод.
void setup() <
pinMode(0, OUTPUT);
>
void loop() <
digitalWrite(0, HIGH);
delay(1000);
digitalWrite(0, LOW);
delay(1000);
>
Загружать нужно не кнопкой как обычно, а через меню Скетч —>> Загрузить через программатор, если все сделано правильно, то светодиод начнет мигать.
В Arduino IDE можно прошить ATmega8 и без установки дополнительных плат, выбрав в качестве платы «Arduino NG or older» и в качестве процессора «aTmega8». Но в таком случае не будет возможности выбора от какого генератора (внешнего или внутреннего) и на какой частоте будет работать МК, а работать он будет от внешнего генератора на чистоте 16 MGz, и перезаписать его настройки в дальнейшем без подключения кварцевого резонатора к выводам 9 и 10 будет невозможно, будьте внимательны!
Ну и напоследок приведу ссылки на ядра для работы с микроконтроллерами серии ATtiny, устанавливаются они аналогично MiniCore:
Как прошить микроконтроллер ATmega, AVR
Прошиваем микроконтроллер AVR.
Как и чем прошить avr микроконтроллер.
2)Теперь нужно установить драйвера для вышеприведенного программатора
Скачать можно здесь eXtremeBurnerAV_LampCORE_ru
Соединение без макетной платы и с помощью обычных проводов
Смотрим распиновку разъема программатора:
Паяем к микроконтроллеру в соответствии с распиновкой.
Или можно просто запихать в разъем шлейфа обычные провода, но при таком соединении возможен плохой контакт или его отсутствие.
вручную, запустив файл InstallDriver.exe )
Затем выбираем вкладку Read и нажимаем Flash(считать прошивку(на многих коммерческих устройствах устанавливают бит защиты от считывания))
(Если выдается ошибка Power On Failed
Если драйвера установлены, подсоединено всё правильно то имеем такой результат:
Мы считывали еще не прошитый микроконтроллер ATMEGA8, поэтому у нас будут считаны только нули(FFFF):
Попробуем прошить микроконтроллер
Она мигает светодиодом на любом выводе D микроконтроллера ATmega, так как в прошивке задана установка всех портов D как выход.
Запускаем eXtreme Burner
Нажимаем Open и в файлах выбираем прошивку в формате HEX
Дальше должно быть так:
Для запуска прошивки выбираем вкладку Write(Запись) и нажимаем Flash, должен пойти процесс прошивки
Прошивка успешно завершилась:
Как видно нули заменились другими цифрами и видно оставшееся пустое мето в памяти для прошивки.
Теперь отсоединим микроконтроллер от программатора и проверим работу прошивки на практике.
Собираем все по такой схеме:
Собрали, всё должно работать(светодиод мигает 2 раза в секунду):
Внимание! Не вешайте напрямую нагрузку на ножки микросхемы с потреблением больше 25 мА!
Не подавайте на микросхему больше 5.5 Вольт.
Прошиваем AVR вручную
Картинка для привлечения внимания — xkcd
Представьте себе, что вы попали на необитаемый остров. И вам жизненно необходимо запрограммировать микроконтроллер. Зачем, спросите вы? Ну, допустим, чтобы починить аварийный радиомаяк, без которого шансы на спасение резко падают.
Радуясь, что еще не забыли курс ассемблера, вы кое-как написали программу палочкой на песке. Среди уцелевших вещей каким-то чудом оказалась распечатка документации на контроллер (хорошо, что вы еще не успели пустить её на растопку!), и программу удалось перевести в машинные коды. Осталась самая ерунда — прошить её в контроллер. Но в радиусе 500 километров нет ни одного программатора, не говоря уже о компьютерах. У вас только источник питания (батарея из картошки кокосов) и пара кусков провода.
Как же прошить МК фактически голыми руками?
В качестве подопытного будет выступать МК ATtiny13 фирмы Atmel. Описанная методика работает практически с любым контроллером семейства AVR, разве что коды команд могут незначительно отличаться.
Интерфейс
Для своего же удобства можно добавить индикацию входных сигналов. Схема усложняется, но не чрезмерно:
Рис. 2. Схема с индикацией сигналов.
Защита от дребезга
К сожалению, просто используя кнопки для формированя сигналов SPI, хорошего результата мы не добьёмся. Причина этого — в неприятном явлении, которое называется дребезг контактов. При замыкании механические контакты соударяются, отскакивают друг от друга, и вместо одного импульса получается несколько. Для подавления дребезга придется собрать простую схему из пары логических элементов:
Рис. 3. RS-триггер для подавления дребезга.
Это RS-триггер, который переключается в состояние «1» в момент замыкания нижнего контакта переключателя и игнорирует остальные импульсы дребезга. Сброс триггера обратно в «0» происходит при замыкании верхнего контакта, то есть при отпускании кнопки.
«Ишь, разбежался!» — скажет читатель, — «Я же на необитаемом острове сижу. Где я тут возьму триггеры?» Хорошо, можно избавиться от дребезга и без электронных схем. Нужно только заменить «сухой» контакт на мокрый жидкостный. Выключателем будут служить два электрода, опускаемые в проводящую жидкость.
Сигналы MOSI и RESET не требуют подавления дребезга, в отличие от SCK: здесь значение имеет только уровень сигнала в момент выборки, а не его фронты.
Как работает SPI
Рис. 4. Временная диаграмма работы SPI.
SPI является синхронным интерфейсом: все операции синхронизированы фронтами тактового сигнала (SCK), который вырабатывается ведущим устройством. Максимальная скорость передачи ограничена величиной 1/4 тактовой частоты контроллера. На минимальную же скорость нет никаких ограничений: без тактового сигнала обмен данными «замораживается», и интерфейс может оставаться в статическом состоянии сколь угодно долго.
Передача по SPI осуществляется в полнодуплексном режиме, по одному биту за такт в каждую сторону. По возрастающему фронту сигнала SCK ведомое устройство считывает очередной бит с линии MOSI, а по спадающему — выдает следующий бит на линию MISO. Все внимание на рисунок 4.
Протокол прошивки
Включение режима программирования
Режим программирования включается подачей «0» на ногу RESET. Но есть некоторые тонкости. Atmel рекомендует сначала выставить на выводах RESET и SCK низкий уровень, а только потом подавать на контроллер питание. Если такой возможности нет, нужно после включения питания подать «0» на SCK, а затем положительный импульс на RESET:
Рис. 5. Перевод МК в режим программирования.
Но и это еще не все. Далее нужно передать команду на собственно включение режима программирования: 10101100 01010011 xxxxxxxx xxxxxxxx
Рис. 6. Команда «Program Enable».
Биты, обозначенные как x, могут быть любыми. Во время передачи третьего байта контроллер должен переслать обратно второй байт (01010011). Если это произошло, значит, все хорошо, команда принята, контроллер ждет дальнейших инструкций. Если ответ отличается, нужно перезагрузить МК и попробовать все сначала.
Проверка идентификатора
Рис. 7. Команда «Read Signature Byte».
Прежде чем что-либо писать в память МК, нужно убедиться, что перед нами именно та модель, которая нужна. Каждая модель контроллера имеет свой трехбайтный идентификатор (Signature). Прочитать его можно командами вида
00110000 000xxxxx xxxxxxbb xxxxxxxx
Вместо bb (третий байт команды) следует подставить 00 для первого байта идентификатора, 01 — для второго и 10 — для третьего. Соответствующий байт идентификатора будет передан контроллером при отправке 4-го байта команды.
Для ATtiny13 значение идентификатора равно 00011110 10010000 00000111 (0x1E 90 07).
Очистка контроллера
Рис. 8. Команда «Chip Erase».
Следующим шагом будет очистка памяти МК, которая осуществляется посылкой команды «Chip Erase»
10101100 100xxxxx xxxxxxxx xxxxxxxx
Этой командой выполняется стирание содержимого Flash и EEPROM (все ячейки будут содержать FF), а также снятие lock-битов, если они установлены.
Запись во flash-память
Память программ (Flash) в ATtiny13 состоит из 512 двухбайтных слов (1К байт). Адрес слова имеет разрядность 9 бит. Flash-память разделена на страницы, каждая страница в чем разница» rel=dofollow»>страница имеет размер 16 слов (всего получается 32 страницы). Запись во flash осуществляется в два этапа.
Сначала необходимо загрузить данные в буфер страницы, для этого используется команда «Load Program Memory Page»
01000000 000xxxxx xxxxbbbb iiiiiiii — для загрузки младшего байта слова, и 01001000 000xxxxx xxxxbbbb iiiiiiii — для загрузки старшего.
4 младших бита 3-го байта команды bbbb — адрес слова на странице, iiiiiiii — загружаемый байт. Сначала всегда должен загружаться младший байт слова, а затем — старший байт того же слова.
Рис. 9. Команда «Load Program Memory Page».
После того, как буфер страницы загружен, нужно выполнить команду «Write Program Memory Page» 01001100 0000000a bbbbxxxx xxxxxxxx для записи страницы непосредственно в память контроллера.
Младший бит второго байта и старшие 4 бита третьего a:bbbb — пятибитный номер страницы для записи.
Рис. 10. Команда «Write Program Memory Page».
Все это выглядит довольно запутанно, но ничего сложного нет. Адрес любого байта памяти программ состоит из 10 бит: ppppp:bbbb:w, где
ppppp — номер страницы (используется в команде «Write Program Memory Page»);
bbbb — адрес слова на странице (в команде «Load Program Memory Page»);
w — бит, определяющий старший или младший байт в слове (зашифрован в первом байте команды «Load Program Memory Page»).
Чтение flash
Рис. 11. Команда «Read Program Memory».
После записи прошивки в МК неплохо бы проверить записанное, так как никакой проверки целостности данных не выполнялось. Единственный способ проверки состоит в том, чтобы прочитать весь объем flash-памяти и сравнить с оригиналом.
Читать память программ легче, чем писать в нее. Забудьте про страничную организацию, чтение выполняется побайтно. Команда «Read Program Memory» выглядит так:
00100000 0000000a bbbbbbbb xxxxxxxx — для чтения младшего байта слова, и 00101000 0000000a bbbbbbbb xxxxxxxx — для старшего.
Младший бит второго байта и весь третий байт a:bbbbbbbb — адрес слова в памяти. Прочитанный байт возвращается во время передачи 4-го байта команды.
Завершение программирования
Пожалуй, самая простая операция. Чтобы завершить программирование и перевести МК в рабочий режим, достаточно подать на RESET логический уровень «1». Контроллер запустится и будет работать по новой программе.
Практика
Настало время воспользоваться полученными знаниями на практике. Жертва эксперимента — ATtiny13 — воткнут в макетную плату, рядом собран формирователь сигналов, всё готово:
Рис. 12. Экспериментальная схема.
Шить будем программу вида «проще некуда»:
Всё, что она делает — это выдает единицу на ногу PB1 и уходит в бесконечный цикл. В машинных кодах она занимает всего четыре слова:
Для прошивки её в контроллер необходимо набрать следующие команды:
Ключ на старт, поехали!
Всего 425 нажатий, и МК оживает. Теперь вас точно найдут и спасут с этого проклятого острова.
Чем прошить атмегу 8
Добрый день. к сожалению я окончательно запутался и никак не разобраться без совета. не могли бы ответить на простые для Вас вопросы..
3. ПО умолчанию ATMeage8 идет с пустыми секторами loader. облать эта состовляет 2 кб. так?
4. Эта область loader нужна для чего? только что бы заливать прошивки свои?
8. если в области Loader чисто то программы ничего залить не смогут. так?
9. что именно заливается в область loader, где взять прошивку что бы в дальнейшем использовать bootloadHID или HIDBootFlash
jordan | ||||
Зарегистрирован: Чт апр 01, 2010 14:14:55 |
| |||
pyzhman | ||||
Карма: 49 | ||||
jordan | ||||
Зарегистрирован: Чт апр 01, 2010 14:14:55 |
| |||
md5sum | ||||
Зарегистрирован: Вт окт 27, 2009 22:39:19 |
| |||
pyzhman | ||||
Карма: 49 | ||||
Emmys | |||
Зарегистрирован: Пн май 09, 2011 22:34:41 |
| ||
md5sum | ||||
Зарегистрирован: Вт окт 27, 2009 22:39:19 |
| |||
Emmys | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Зарегистрирован: Пн май 09, 2011 22:34:41 |
|