чем определяется существующая специализация клеток

3.14 Современные представления о гене и геноме

Вопрос 1. Что такое геном?

Геном — это совокупность генов, характер­ных для гаплоидного набора хромосом данного биологического вида. Геном, в отличие от гено­типа, является характеристикой вида, а не осо­би, поскольку описывает набор генов, свойст­венных данному виду, а не их аллели, обуслав­ливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.

Вопрос 2. Чем определяется существующая специализация клеток?

Специализация клеток организма опреде­ляется избирательным функционированием генов. В каждой клетке работают гены, харак­терные именно для данного типа тканей и ор­ганов: в клетках мускулатуры — гены мышеч­ных белков, в клетках стенок желудка — гены пищеварительных ферментов и т. д. Большин­ство остальных генов при этом заблокировано, и их активация может привести к развитию серьезнейших заболеваний (например, к появ­лению раковой опухоли).

Вопрос 3. Какие обязательные элементы входят в состав гена эукариотической клетки?

Обязательными элементами гена эукариот являются:

регуляторные участки, расположен­ные в начале и конце гена, а также иногда вне гена (на некотором удалении от него). Они оп­ределяют, когда, при каких обстоятельствах и в каких типах тканей будет работать этот ген;
структурная часть, которая содержит информацию о первичной структуре кодируе­мого белка; обычно структурная часть меньше регуляторной.

Вопрос 4. Приведите примеры взаимодействия генов.

Примером взаимодействия генов может служить пигментация (окраска) шерсти у кро­лика. Формирование определенной окраски регулируется двумя генами. Один из них (на­зовем его А) отвечает за наличие пигмента, и в случае, если работа данного гена нарушена (рецессивный аллель), шерсть кролика будет белого цвета (генотип аа). Второй ген (назовем его В) отвечает за неравномерность окрашива­ния шерсти. В случае нормального функци­онирования этого гена (доминантный аллель), синтезируемый пигмент скапливается у осно­вания волоса, и кролик имеет серую окраску (генотипы АаВв, ААВв, АаВВ, ААВВ). Если же второй ген представлен только рецессивны­ми аллелями, то синтезируемый пигмент рас­пределяется равномерно. У таких кроликов шерсть черного цвета (генотипы Аавв, ААвв).

Источник

Структура гена. Современные представления о гене и геноме

Вопрос 1. Что такое геном?
Геном — это совокупность генов, характерных для гаплоидного набора хромосом данного биоло-гического вида. Геном, в отличие от генотипа, является характеристикой вида, а не особи, поскольку описывает набор генов, свойственных данному виду, а не их аллели, обуславливающие индивидуальные отличия отдельных организмов. Степень сходства геномов разных видов отражает их эволюционное родство.

Вопрос 2. Чем определяется существующая специализация клеток?
Специализация клеток организма опредееяется избирательным функционированием генов. В каждой клетке работают гены, характерные именно для данного типа тканей и органов: в клетках мускулатуры — гены мышечных белков, в клетках стенок желудка — гены пищеварительных ферментов и т. д. Большинство остальных генов при этом заблокировано, и их активация может привести к развитию серьезнейших заболеваний (например, к появлению раковой опухоли).

Вопрос 3. Какие обязательные элементы входят в состав гена эукариотической клетки?
Обязательными элементами гена эукариот являются:
1. регуляторные участки, расположенные в начале и конце гена, а также иногда вне гена (на некотором удалении от него). Они определяют, когда, при каких обстоятельствах и в каких типах тканей будет работать этот ген (левые, промежуточные и правые регуляторные элементы).
2. участок ДНК, кодирующий первичный транскрипт, включающий последовательность нуклеотидов, обнаруживаемую в молекулах РНК; интроны (для мРНК), промежуточные последовательности — спейсеры (для рРНК). Интроны и спейсеры удаляются в ходе процессинга первичных транскриптов; нетранслируемые последовательности нуклеотидов.
3. Минимальные последовательности, необходимые для начала транскрипции (промотор) и конца транскрипции (терминатор).
4. Последовательности, регулирующие частоту инициации транскрипции; ответственные за индуцибельность и репрессию транскрипции, а также клеточную, тканевую и временную специфичность транскрипции. Они разнообразны по строению, положению и функциям.
5. К их числу относятся энхансеры (от англ. еnhаnсе — усиливать) и сайленсеры (от англ. silence — заглушать) — это последовательности ДНК, расположенные в тысячах пар нуклеотидов от промотора эукариотического гена и оказывающие дистанционное влияние на его транскрипцию.
6. включены последовательности ДНК, которые влияют на пространственную конфигурацию гена в хроматине, последовательности, которые регулируют его топологию.
На рисунке (рис.3) показана схема строения эукариотического гена, отвечающего за кодирование синтеза белка.

Вопрос 4. Приведите примеры взаимодействия генов.
Примером взаимодействия генов может служить пигментация (окраска) шерсти у кролика. Формирование определенной окраски регулируется двумя генами. Один из них (назовем его А) отвечает за наличие пигмента, и в случае, если работа данного гена нарушена (рецессивный аллель), шерсть кролика будет белого цвета (генотип аа). Второй ген (назовем его В) отвечает за неравномерность окрашивания шерсти. В случае нормального функционирования этого гена (доминантный аллель), синтезируемый пигмент скапливается у основания волоса, и кролик имеет серую окраску (генотипы АаВb, ААВb, АаВВ, ААВВ). Если же второй ген представлен только рецессивными аллелями, то синтезируемый пигмент распределяется равномерно. У таких кроликов шерсть черного цвета (генотипы Ааbb, ААbb).

Источник

Чем определяется существующая специализация клеток

Подробное решение параграф § 28 по биологии для учащихся 10 класса, авторов Сивоглазов В.И., Агафонова И.Б., Захарова Е.Т. 2014

Что такое ген и генотип?

Ген – это фрагмент (участок или отрезок) ДНК, содержащий информацию об одной молекуле белка. Генотип – это набор всех генов в организме.

Что вам известно о современных достижениях в области генетики?

– Перспективы генной терапии в лечении атеросклероза сосудов нижних конечностей.

– Использование молекулярно-генетических маркеров для диагностики ряда психических заболеваний

– Лечение редкой формы паралича при помощи генной терапии

– Генетика выходит на битву со старением

– Генетика в помощь антропологам

– Успехи стволовой терапии

– Открытие гена, ответственного за развитие синдрома Ашера первого типа

– Новый способ диагностировать рак любого вида по анализу крови

Вопросы для повторения и задания

1. Что такое геном? Выберите самостоятельно критерии сравнения и сравните понятия «геном» и «генотип».

Геном – совокупность генов, содержащихся в одинарном наборе хромосом данного организма. Например, у человека геном 23 хромосомы. Генотип – это набор всех генов в организме в диплоидном состоянии, например, генотип человека 46 хромосом.

2. Чем определяется существующая специализация клеток?

Ведущую роль в дифференцировке клеток на первых стадиях развития зародыша играют цитоплазма и поверхностный слой яйцеклетки, которая неоднородна по строению. Все клетки зародыша на стадии бластулы сходны по составу генов (генотипу), но различия в составе цитоплазмы обеспечивают дифференцировку клеток, поэтому на стадии гаструлы клетки зародыша оказываются специализированными. Важно подчеркнуть, что механизм дальнейшей специализации, образования тканей и органов усложняется, определяется взаимодействием разных частей зародыша.

3. Какие обязательные элементы входят в состав гена эукариотической клетки?

Если ген – это отрезок ДНК, значит состоит из нуклеотидов, соединенных между собой.

В соответствии с современными научными представлениями ген эукариотических клеток, кодирующий определённый белок, всегда состоит из нескольких обязательных элементов. Как правило, в начале и в конце гена располагаются специальные регуляторные участки; они определяют, когда, при каких обстоятельствах и в каких тканях будет работать этот ген. Подобные регуляторные участки дополнительно могут находиться и вне гена, располагаясь достаточно далеко, но тем не менее активно участвуя в его управлении. Кроме регуляторных зон существует структурная часть гена, которая, собственно, и содержит информацию о первичной структуре соответствующего белка. У большинства генов эукариот она существенно короче регуляторной зоны.

4. Приведите примеры взаимодействия генов.

В качестве примера взаимодействия генов рассмотрим, как наследуется окраска цветка у некоторых растений. В клетках венчика душистого горошка синтезируется некое вещество, так называемый пропигмент, который под действием специального фермента может

превратиться в антоциановый пигмент, вызывающий пурпурную окраску цветка. Значит, наличие окраски зависит от нормального функционирования по крайней мере двух генов, один из которых отвечает за синтез пропигмента, а другой — за синтез фермента. Нарушение в работе любого из этих генов приведёт к нарушению синтеза пигмента и, как следствие, к отсутствию окраски; при этом венчик цветков будет белый. Иногда встречается и противоположная ситуация, когда один ген влияет на развитие нескольких признаков и свойств организма. Такое явление называют плейотропией или множественным действием гена. Как правило, такое действие вызывают гены, функционирование которых очень важно на ранних стадиях онтогенеза. У человека подобным примером может служить ген, участвующий в формировании соединительной ткани. Нарушение в его работе приводит к развитию сразу нескольких симптомов (синдром Марфана): длинные «паучьи» пальцы, очень высокий рост из-за сильного удлинения конечностей, высокая подвижность суставов, нарушение структуры хрусталика и аневризма (выпячивание стенки) аорты.

Подумайте! Вспомните!

1. Митохондрии содержат ДНК, гены которой кодируют синтез многих белков, необходимых для построения и функционирования этих органоидов. Подумайте, как будут наследоваться эти внеядерные гены.

У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые. Гены, закодированные в митохондриальной ДНК, относятся к группе плазмагенов, расположенных вне ядра (вне хромосомы). Совокупность этих факторов наследственности, сосредоточенных в цитоплазме клетки, составляет плазмон данного вида организмов (в отличие от генома). У большинства многоклеточных организмов митохондриальная ДНК наследуется по материнской линии. Яйцеклетка содержит на несколько порядков больше копий митохондриальной ДНК, чем сперматозоид. В сперматозоиде обычно не больше десятка митохондрий (у человека — одна спирально закрученная митохондрия), в небольших яйцеклетках морского ежа — несколько сотен тысяч, а в крупных ооцитах лягушки — десятки миллионов. Кроме того, обычно происходит деградация митохондрий сперматозоида после оплодотворения.

2. Вспомните известные вам особенности развития человека. На каком этапе эмбриогенеза уже возникает чёткая дифференциация клеток?

чем определяется существующая специализация клеток. Смотреть фото чем определяется существующая специализация клеток. Смотреть картинку чем определяется существующая специализация клеток. Картинка про чем определяется существующая специализация клеток. Фото чем определяется существующая специализация клеток

3. Создайте портфолио по теме «Исследования ДНК человека: надежды и опасения».

Зачем мне нужен генетический анализ? Возможно, уже через пару лет этот вопрос покажется вам глупым. Вы же не удивляетесь сейчас, когда врач просит вас сдать анализ крови? А уже очень скоро генетический анализ будет делаться в обязательном порядке каждому ребенку в роддоме и каждому пациенту, который обратился в клинику. Потому что по вашему ДНК можно определить, к каким заболеваниям у вас есть предрасположенность и какие лекарства для вас более эффективны.

Учёные-генетики из США при помощи технологии точного редактирования генов предприняли очередную попытку видоизменить ДНК яйцеклетки человека. Данный эксперимент был проведён с целью избавления будущего потомства от наследственных заболеваний, передающихся эмбриону от родителей. Ряд экспертов-биологов выступили против подобных исследований. В Великобритании, как и во многих других странах, изменение хромосом в яйцеклетке или сперматозоидах человека с целью получения искусственно оплодотворённого эмбриона запрещено законом из-за опасений, что «конструирование младенцев» будет поставлено на поток.

Источник

Чем определяется существующая специализация клеток

Клеточная специализация, также известная как дифференцировка клеток, представляет собой процесс, посредством которого родовые клетки превращаются в специфические клетки, предназначенные для выполнения определенных задач в организме. Клеточная специализация является наиболее важной в развитии эмбрионов. У взрослых стволовые клетки специализируются на замене клеток, которые изнашиваются в костном мозге, мозге, сердце и крови.

Механика дифференцировки клеток

Точный механизм дифференцировки клеток неизвестен по состоянию на апрель 2010 г., хотя ученые знают, что определенные гены в ДНК клетки должны быть активированы или деактивированы, чтобы произвести определенный тип клеток. Строковский Ярослав выдвигает гипотезу, что соседние клетки вводят в клетку агент, который заставляет ее дифференцироваться. Было доказано, что клетки костного мозга специализируются, когда количество лейкоцитов в организме становится слишком низким.

Клеточная специализация и развитие эмбрионов

При зачатии образуется зигота, состоящая всего из одной клетки. Зигота превращается в зародыш, который является многоклеточным организмом. Специализация клеток жизненно важна для правильного развития эмбрионов. Эмбрион нуждается в клетках для развития каждого из его жизненно важных органов, таких как мозг, сердце и кожа.

Клеточная специализация у взрослых

Взрослые состоят в основном из клеток, называемых соматическими клетками, которые не изменяются. Тело взрослого человека также содержит стволовые клетки, которые могут быть специализированы для замены изношенных клеток в организме. Взрослые стволовые клетки можно найти во многих областях тела, включая мозг, кости и костный мозг, сердце, кровь, кожу и репродуктивные органы. Кроветворные стволовые клетки называются кроветворными клетками, а клетки, которые образуют кости или ткани, называются стромальными клетками.

Дедифференцировка

Использование специализации клеток в медицине

В настоящее время ученые изучают возможности использования взрослых стволовых клеток в лечении таких заболеваний, как диабет и болезни сердца; они предполагают, что стволовые клетки могут быть запущены, чтобы специализироваться на замене больных клеток в сердце или поджелудочной железе. Пересадки костного мозга уже используются для генерации большего количества лейкоцитов у больных лейкемией и для лечения определенных типов рака молочной железы или яичников.

Источник

Биология клетки/Часть 1. Клетка как она есть/1/7

чем определяется существующая специализация клеток. Смотреть фото чем определяется существующая специализация клеток. Смотреть картинку чем определяется существующая специализация клеток. Картинка про чем определяется существующая специализация клеток. Фото чем определяется существующая специализация клеток

Многоклеточный организм отличаются от одноклеточных и колониальных четко выраженной дифференциацией функций отдельных групп клеток. Специализация клеток повышает их эффективность в выполнении определённых функций, а их упорядоченность и согласованность действий позволяют целому многоклеточному организму приобретать свойства, недоступные одноклеточным и колониальным организмам.

Клетка в многоклеточном организме во многом действует так же, как и в одноклеточном организме при взаимодействии с внешней средой и клетками окружения. Однако усиление специализации клеток увеличивает и их взаимозависимость от клеток другой специализации.

Важную роль в строении многоклеточного организма играют стволовые клетки. Эти клетки способны делиться асимметрично, порождая клетку, подобную материнской, а также новую клетку, способную дифференцироваться, т.е. приобретать специализированные функции. Стволовые клетки разделяют по способности порождать другие виды клеток. Самыми широкими возможностями обладают т.н. тотипотентные стволовые клетки, такие как зигота и бластомеры, способные дать начало любым типам клеток. Далее, по мере сужения диапазона возможной дифференцировки, различают плюрипотентные, мультипотентные и унипотентные стволовые клетки. В органах и тканях взрослого организма присутствуют стволовые клетки разной степени зрелости и потентности, способные при необходимости превратиться в клетки нужного типа.

Число типов клеток в многоклеточном организме может достигать нескольких сотен. Например, во взрослом организме млекопитающего насчитывается около 350 различных видов клеток. Клетки различаются по размеру, форме, числу ядер, степени развитости органоидов, химическому составу и функциям:

Эритроциты высших позвоночных имеют диаметр 4–7 микрон, а клетки мышц — это крупные синцитии длиной до нескольких сантиметров. Ещё более крупные линейные размеры имеют нейроны с их гигантскими аксонами, достигающими в длину около метра.

Клетки могут иметь разнообразную форму: близкую к шарообразной (клетка крови — лимфоцит), напоминающую многогранник (клетка печени — гепатоцит), звездчатую (клетка костной ткани — остеобласт), цилиндрическую (клетка мерцательного эпителия). У млекопитающих зрелые эритроциты лишены ядер и имеют форму двояковогнутого диска. Монополярные нервные клетки, нейроны, имеют тело размером в несколько десятков микрон и отростки, аксоны, длиной до нескольких десятков сантиметров.

В большинстве клеток имеется одно ядро, и такие клетки называют одноядерными. Существуют также клетки с двумя, тремя, несколькими десятками и даже сотнями ядер. Это — многоядерные клетки. Клетки мышц, например, являются многоядерными клетками (синцитиями), появившимися из одноядерных в процессе эмбриогенеза. А эритроциты в зрелом состоянии не имеют ядра вовсе (это безъядерные клетки).

Органоиды различных клеток многоклеточного организма различаются по степени развитости. Например, в клетках кишечного эпителия лизосомы и аппарат Гольджи развиты лучше, чем в нейронах. А в клетках надпочечника цитоскелет развит слабее, чем в клетках мышечной ткани. Зато клетки надпочечника обладают сильно развитой эндоплазматической сетью; это связано с их секреторной активностью.

В ходе эволюции сходные клетки многоклеточного организма специализировались на выполнении определенных функций, что привело к формированию тканей. Разные ткани объединились в органы, а органы — в системы органов. Функции клеток различных тканей и органов, выполняющих специализированные функции, также существенно различаются. Так, эритроциты выполняют функцию переноса кислорода и углекислого газа, клетки различных эпителиев — защитную, выделительную, всасывающую и разграничительную функции, а нейроны, клетки нервной ткани — функцию восприятия раздражителей, генерации и передачи нервных импульсов.

Специализация клеток происходит вследствие дифференцированной работы генома. Репрессия и дерепрессия конкретных участков генома, а также биохимическая и анатомо-морфологическая дифференциация происходят из-за разной концентрации действующих на клетки сигнальных веществ, питательных веществ и ионов.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *