чем определяется растворимость белков в водной среде

Растворимость белка в воде. Зависимость растворимости от аминокислотного состава белков. Физико-химические свойства водных растворов белков. Понятие об изоэлектрической точке.

Белки – полиэлектролиты, т.к. имеют фунциональные группы, способные к электролитической диссоциации. Визоэлектрической точке (рI) суммарный заряд белков, обладающих амфотерными свойствами, равен нулю, и белки не перемещаются в электрическом поле. В изоэлектрической точке белки наименее устойчивы в растворе и легко выпадают в осадок. Для большинства белков животных тканей рI = 5,5-7,0.

Денатурация и ренатурация белков. Денатурирующие агенты (физические и химические). Использование явления денатурации в клинике. Реакции осаждения белка в водных растворах. Высаливание белков. Обратимость процесса. Использование высаливания в медицине.

Денатурация, осуществляемая в мягких условиях, часто оказывается обратимой, т. е. при удалении денатурирующего агента происходит восстановление (ренатурация) нативной конформации белковой молекулы. Для ряда белков восстановление может быть 100%-м, причём это касается ни только водородных и гидрофобных связей, но и дисульфидных мостиков.

Белки под действием различных факторов (действие химических реагентов, нагревание и др.) легко подвергаются денатурации: происходит разрушение нативной структуры белков, приводящее к потере некоторых природных свойств, например, растворимости, биологической активности.

1. Осаждение белков при нагревании. В пробирку наливают 0,5 мл раствора белка и нагревают.

2. Осаждение белков солями тяжелых металлов. Белки при взаимодействии с солями тяжелых металлов (медь, ртуть, свинец и др.) денатурируют и образуют нерастворимые в воде комплексные соединения вследствие адсорбции тяжелого металла на поверхности белковой молекулы. На этой способности белков основано использование их в качестве противоядия при отравлении тяжелыми металлами.

3. Осаждение белков концентрированными минеральными кислотами. Выпадение белка в осадок при взаимодействии с концентрированными минеральными кислотами обусловлено дегидратацией белковых молекул, образованием нерастворимых комплексных солей белка и кислот и др. В избытке серной и соляной кислот происходит растворение первоначально выпавших осадков белка. Избыток азотной кислоты не растворяет осажденный белок. Реакция с азотной кислотой используется при клинических исследованиях мочи на присутствие в ней белка (проба Геллера).

Высаливание – осаждение белков из раствора при добавлении растворов солей щелочных и щелочноземельных металлов. Метод применяется в клинической практике при анализе белков сыворотки крови, например, для разделения глобулинов (выпадают в осадок при 50% насыщении раствора сульфата аммония) и альбуминов (при 100% насыщении).

В медицине денатурацию используют для осаждения чужеродных белков, при ожогах, обморожениях. Денатурирующие агенты часто применяются для стерилизации медицинских инструментов и материалов в автоклавах (здесь денатурирующий агент – высокая температура). Их используют также в качестве антисептиков (спирт, фенол, хлорамин и др.) для очистки загрязненных материалов и поверхностей. То же происходит при обеззараживании ран, ссадин, царапин раствором йода или спиртом. На денатурации белков основано применение мышьяковистого ангидрида в стоматологической практике при лечении пульпита. Высаливаниебелков используют в процессе приготовления лечебных сывороток, при анализе сыворотки крови.

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Источник

Растворимость белка в воде. Зависимость растворимости от аминокислотного состава белков. Физико-химические свойства водных растворов белков. Понятие об изоэлектрической точке

Растворимость белков в воде зависит от всех перечисленных выше свойств белков: формы, молекулярной массы, величины заряда, соотношения полярных и неполярных функциональных групп на поверхности белка. Кроме этого, растворимость белка определяется составом растворителя, т.е. наличием в растворе других растворённых веществ. Например, некоторые белки легче растворяются в слабом солевом растворе, чем в дистиллированной воде. С другой стороны, увеличение концентрации нейтральных солей может способствовать вьшадению определённых белков в осадок. Денатурирующие агенты, присутствующие в растворе, также снижают растворимость белков.

Растворимость белков определяется их аминокислотным составом, особенностями организации молекулы и свойствами растворителя. Например, альбумины растворимы в воде и в слабых растворах солей, а коллаген и кератины нерастворимы в большинстве растворителей. Стабильность растворам белков придают заряд белковой молекулы и ее гидратная оболочка. рН-среды влияет на заряд белка, а следовательно, и на его растворимость. В изоэлектрической точке растворимость белка наименьшая.

Белки способны адсорбировать на своей поверхности низкомолекулярные органические соединения и неорганические ионы. Это свойство предопределяет транспортные функции отдельных белков.

Изоэлектрическая точка (pI) — кислотность среды (pH), при которой определённая молекула или поверхность не несёт электрического заряда. Амфотерные молекулы (цвиттер-ионы) содержат как положительные, так и отрицательные заряды, наличием которых определяется pH раствора. Заряд различных функциональных групп таких молекул может меняться в результате связывания или, наоборот, потери протонов H+. Величина изоэлектрической точки такой амфотерной молекулы определяется величинами констант диссоциации кислотной и осно́вной фракций:

Растворимость амфотерных молекул, как правило, является минимальной при pH равной или близкой к изоэлектрической точке pI. Часто они в своей изоэлектрической точке выпадают в осадок. Многие биологические молекулы, такие как аминокислоты и белки, являются по своей природе амфотерными, так как содержат и кислотные, и осно́вные функциональные группы. Общий заряд белка определяется боковыми группами аминокислот, которые могут быть положительно- или отрицательно-заряженными, нейтральными или полярными. Общий заряд белка при pH ниже изоэлектрической точки является положительным. Наоборот, при pH выше изоэлектрической точки общий заряд белка — отрицательный. В самой изоэлектрической точке сумма положительных зарядов на белковой молекуле равна сумме отрицательных зарядов, поэтому будучи помещена в электрическое поле такая молекула не двигается. Изоэлектрическое фокусированиебелков используется для разделения смеси белков в полиакриламидном геле в градиенте pH в зависимости от величины их изоэлектрических точек.

Денатурация и ренатурация белков. Денатурирующие агенты (физические и химические). Использование явления денатурации в клинике. Реакции осаждения белка в водных растворах. Высаливание белков. Обратимость процесса. Использование высаливания в медицине.

Источник

Чем определяется растворимость белков в водной среде

§ 9. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ

Белки – это очень крупные молекулы, по своим размерам они могут уступать только отдельным представителям нуклеиновых кислот и полисахаридам. В таблице 4 представлены молекулярные характеристики некоторые белков.

Молекулярные характеристики некоторых белков

Относитель-ная молекулярная масса

Число аминокислотных остатков

Зная относительную молекулярную массу белка, можно приблизительно оценить, какое число аминокислотных остатков входит в его состав. Средняя относительная молекулярная масса аминокислот, образующих полипептидную цепь, равна 128. При образовании пептидной связи происходит отщепление молекулы воды, следовательно, средняя относительная масса аминокислотного остатка составит 128 – 18 = 110. Используя эти данные, можно подсчитать, что белок с относительной молекулярной массой 100000 будет состоять приблизительно из 909 аминокислотных остатков.

Электрические свойства белковых молекул

Электрические свойства белков определяются присутствием на их поверхности положительно и отрицательно заряженных аминокислотных остатков. Наличие заряженных группировок белка определяет суммарный заряд белковой молекулы. Если в белках преобладают отрицательно заряженные аминокислоты, то его молекула в нейтральном растворе будет иметь отрицательный заряд, если преобладают положительно заряженные – молекула будет иметь положительный заряд. Суммарный заряд белковой молекулы зависит и от кислотности (рН) среды. При увеличении концентрации ионов водорода (увеличении кислотности) происходит подавление диссоциации карбоксильных групп:

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

и в то же время увеличивается число протонированных амино-групп;

Таким образом, при увеличении кислотности среды происходит уменьшение на поверхности молекулы белка числа отрицательно заряженных и увеличение числа положительно заряженных групп. Совсем другая картина наблюдается при снижении концентрации ионов водорода и увеличении концентрации гидроксид-ионов. Число диссоциированных карбоксильных групп возрастает

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

и снижается число протонированных аминогрупп

Итак, изменяя кислотность среды, можно изменить и заряд молекулы белка. При увеличении кислотности среды в молекуле белка снижается число отрицательно заряженных группировок и увеличивается число положительно заряженных, молекула постепенно теряет отрицательный и приобретает положительный заряд. При снижении кислотности раствора наблюдается противоположная картина. Очевидно, что при определенных значениях рН молекула будет электронейтральной, т.е. число положительно заряженных групп будет равно числу отрицательно заряженных групп, и суммарный заряд молекулы будет равен нулю (рис. 14).

Значение рН, при котором суммарный заряд белка равен нулю, называется изоэлектрической точкой и обозначается pI.

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Рис. 14. В состоянии изоэлектрической точки суммарный заряд молекулы белка равен нулю

Изоэлектрическая точка для большинства белков находится в области рН от 4,5 до 6,5. Однако есть и исключения. Ниже приведены изоэлектрические точки некоторых белков:

При значениях рН ниже изоэлектрической точки белок несет суммарный положительный заряд, выше – суммарный отрицательный.

Растворимость белков

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Рис. 15. Образование гидратной оболочки вокруг молекулы белка.

На растворимость белка влияет наличие нейтральных солей (Na2SO4, (NH4)2SO4 и др.) в растворе. При малых концентрациях солей растворимость белка увеличивается (рис. 16), так как в таких условиях увеличивается степень диссоциации полярных групп и экранируются заряженные группы белковых молекул, тем самым снижается белок-белковое взаимодействие, способствующее образованию агрегатов и выпадению белка в осадок. При высоких концентрациях солей растворимость белка снижается (рис. 16) вследствие разрушения гидратной оболочки, приводящего к агрегации молекул белка.

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Рис. 16. Зависимость растворимости белка от концентрации соли

Существуют белки, которые растворяются только в растворах солей и не растворяются в чистой воде, такие белки называют глобулины. Существуют и другие белки – альбумины, они в отличие от глобулинов хорошо растворимы в чистой воде.
Растворимость белков зависит и от рН растворов. Как мы уже отмечали, минимальной растворимостью обладают белки в изоэлектрической точке, что объясняется отсутствием электростатического отталкивания между молекулами белка.
При определенных условиях белки могут образовывать гели. При образовании геля молекулы белка формируют густую сеть, внутреннее пространство которой заполнено растворителем. Гели образуют, например, желатина (этот белок используют для приготовления желе) и белки молока при приготовлении простокваши.
На растворимость белка оказывает влияние и температура. При действии высокой температуры многие белки выпадают в осадок вследствие нарушения их структуры, но об этом более подробно поговорим в следующем разделе.

Денатурация белка

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Рис. 17. Денатурация белка

При денатурации гидрофобные радикалы аминокислот, находящиеся в нативных белках в глубине молекулы, оказываются на поверхности, в результате создаются условия для агрегации. Агрегаты белковых молекул выпадают в осадок. Денатурация сопровождается потерей биологической функции белка.

Денатурация белка может быть вызвана не только повышенной температурой, но и другими факторами. Кислоты и щелочи способны вызвать денатурацию белка: в результате их действия происходит перезарядка ионогенных групп, что приводит к разрыву ионных и водородных связей. Мочевина разрушает водородные связи, следствием этого является потеря белками своей нативной структуры. Денатурирующими агентами являются органические растворители и ионы тяжелых металлов: органические растворители разрушают гидрофобные связи, а ионы тяжелых металлов образуют нерастворимые комплексы с белками.

Наряду с денатурацией существует и обратный процесс – ренатурация. При снятии денатурирующего фактора возможно восстановление исходной нативной структуры. Например, при медленном охлаждении до комнатной температуры раствора восстанавливается нативная структура и биологическая функция трипсина.

Белки могут денатурировать и в клетке при протекании нормальных процессов жизнедеятельности. Совершенно очевидно, что утрата нативной структуры и функции белков – крайне нежелательное событие. В связи с этим следует упомянуть об особых белках – шаперонах. Эти белки способны узнавать частично денатурированные белки и, связываясь с ними, восстанавливать их нативную конформацию. Шапероны также узнают белки, процесс денатурации которых зашел далеко, и транспортируют их в лизосомы, где происходит их расщепление (деградация). Шапероны играют важную роль и в процессе формирования третичной и четвертичной структур во время синтеза белка.

Интересно знать! В настоящее время часто упоминается такое заболевание, как коровье бешенство. Эту болезнь вызывают прионы. Они могут вызывать у животных и человека и другие заболевания, носящие нейродегенеративный характер. Прионы – это инфекционные агенты белковой природы. Прион, попадая в клетку, вызывает изменение конформации своего клеточного аналога, который сам становится прионом. Так возникает заболевание. Прионный белок отличается от клеточного по вторичной структуре. Прионная форма белка имеет в основном b-складчатую структуру, а клеточная – a-спиральную.

Источник

Механизм растворения белков (гидратация)

Физико-химические свойства белков

Физико-химические свойства белков определяются их аминокислотным составом и пространственной структурой (организацией). Белки обладают следующими основными свойствами:

Белки – это гидрофильные вещества. Сначала сухой белок набухает, а затем переходит в раствор. При набухании молекулы воды проникают внутрь белка и связываются с полярными группами радикалов аминокислот. Плотная упаковка полипептидных цепей разрыхляется. Затем белки растворяются, т.е. молекулы белка отрываются от общей массы и переходят в раствор.

Однако, не все молекулы белка, набухая, переходят в раствор. Например, коллаген только набухает (так ведут себя многие фибриллярные белки).

Растворение белков связано с их гидратацией, т.е. образованием гидратной оболочки. Молекулы воды электростатически связываются с ионогенными и неионогенными полярными группами радикалов аминокислот (с их полными положительными и отрицательными зарядами, а также с частично положительными и частично отрицательными зарядами) (рис. 8).

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Рис. 8. Схема формирования гидратной оболочки

Однако часть гидратной воды связывается с атомами пептидных групп водородными связями. Подобным образом преимущественно связывает воду коллаген, так как этот белок содержит много гидрофобных аминокислот.

Количество воды, связанной с белком достигает 30–50 г на 100 г белка. Гидрофильных полярных групп значительно больше на поверхности белковой глобулы, чем в центре.

На стабилизацию(устойчивость) белка в растворе влияют два фактора:

– заряд белковой молекулы;

– наличие гидратной оболочки.

Оба фактора препятствуют коагуляции (конгломерации или склеиванию) белков и выпадению их в осадок.

Между этими двумя факторами существует тесная взаимосвязь: чем больше полярных групп в белке, тем больше связывается воды и тем лучше растворимость белка.

Например, такие глобулярные белки сыворотки крови и молока как альбумины хорошо растворимы даже в воде, а глобулины только в слабо-солевых растворах. Большинство фибриллярных белков плохо растворяются в воде и физиологических растворах или совсем не растворяются.

Растительные белки – проламины – растворяются в 60–80%-ном спирте, а глютелины – в щелочах (0,1–0,2% раствор гидроксида натрия).

Факторы, влияющие на растворимость белков:

– аминокислотный состав полипептидной цепи белка (генетически обусловленный фактор);

– преимущественное расположение гидрофильных аминокислот и олигосахаридных фрагментов на поверхности белковой глобулы. Большинство белков имеют гидрофильную поверхность. Однако есть и гидрофобные белки, поверхность которых образована гидрофобными радикалами аминокислот. Такие белки растворяются в липидах и встречаются преимущественно в мембранах;

– чем ниже относительная гидрофобность белков (т.е. ниже взаимодействие с липидами), тем выше взаимодействие их с молекулами растворителя, следовательно, выше растворимость;

– наличие спирализованных участков на поверхности белка повышает их растворимость;

– растворимость белков зависит от рН среды (в изоэлектрической точке белки имеют наименьшую растворимость);

– от концентрации солей: невысокая концентрация солей щелочных металлов и аммония (NaCl, Na2SO4, (NH4)2SO4) повышает растворимость, так как ионы соли препятствуют ионному (электростатическому) взаимодействию заряженных боковых радикалов аминокислот. Высокие концентрации солей снижают гидратацию глобулы (снимают гидратную оболочку) и тем самым усиливают белок-белковые взаимодействия (белок коагулирует и выпадает в осадок);

– от размеров и формы молекул: низкомолекулярные глобулярные белки с большим количеством гидрофильных групп лучше растворимы в воде и слабосолевых растворах, а фибриллярные – хуже или совсем не растворяются;

– денатурированные белки теряют способность к растворению, поскольку при денатурации изменяется конформация белковой молекулы, и он теряет гидратную оболочку и заряд.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Растворимость белков, свойства растворов белков.

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

чем определяется растворимость белков в водной среде. Смотреть фото чем определяется растворимость белков в водной среде. Смотреть картинку чем определяется растворимость белков в водной среде. Картинка про чем определяется растворимость белков в водной среде. Фото чем определяется растворимость белков в водной среде

Растворимость белков в воде зависит от всех перечисленных выше свойств белков: формы, молекулярной массы, величины заряда, соотношения полярных и неполярных функциональных групп на поверхности белка. Кроме этого, растворимость белка определяется составом растворителя, т.е. наличием в растворе других растворённых веществ. Например, некоторые белки легче растворяются в слабом солевом растворе, чем в дистиллированной воде. С другой стороны, увеличение концентрации нейтральных солей может способствовать вьшадению определённых белков в осадок. Денатурирующие агенты, присутствующие в растворе, также снижают растворимость белков.

Физико-химические свойства белков
Физико-химические свойства белков определяются их аминокислотным составом и пространственной структурой (организацией). Белки обладают следующими основными свойствами:

– денатурацией.
Кислотно-основные свойства белков (электрические)

Белки являются амфотерными полиэлектролитами. Амфотерность белкам придают кислотные и основные группы боковых радикалов аминокислот и концевые аминогруппа (NH3 + ) и карбоксильная группа (COO – ) полипептидного остова, поскольку другие α-амино- и α-карбоксильные группы участвуют в образовании пептидных связей.

Коллоидные и осмотические свойства белков
Водные растворы белков являются устойчивыми и равновесными, они со временем не коагулируют и не требуют присутствия стабилизаторов. Поскольку белковые растворы гомогенны, то напоминают истинные растворы, однако высокая молекулярная масса белков придает их растворам свойства коллоидных систем:
1. Оптические свойства белков
Растворы белков способны рассеивать лучи видимого света (эффект дифракции или явление Тиндаля). Луч света, проходя через раствор белка, преломляется и свет рассеивается. На данном физико-химическом свойстве белков основан метод количественного определения белка рефрактометрически (в чистых белковых растворах, например, в сыворотке крови).

2. Малая скорость диффузии – способствует равномерному распределению белков внутри клетки, между клеткой и кровью, а также препятствует скоплению белка в местах его биосинтеза.

3. Осмотические свойства белков

Белки в клетке, межклеточной жидкости, в крови повышают осмотическое давление и вызывают явление осмоса, т.е. перемещение ионов Nа + и воды через мембраны в раствор белка.

Неспособность белков проникать через полупроницаемые мембраны вследствие высокой молекулярной массы используется в практике для очистки белков от низкомолекулярных примесей (солей, биогенных аминов, мочевины и др.) – процесс диализа.

4. Высокая вязкость белковых растворов

С увеличением концентрации белка вязкость раствора повышается, поскольку повышаются силы сцепления между поверхностями белковых молекул.

При повышении температуры вязкость белковых растворов понижается. Добавление некоторых солей кальция приводит к повышению вязкости, поскольку ионы Са 2+ способствуют сцеплению молекул с помощью кальциевых мостиков. Иногда вязкость белкового раствора в присутствии Са 2+ настолько увеличивается, что он теряет текучесть и превращается в гель.

5. Способность белков к образованию гелей

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *