чем ограничить силу тока

Маленький ликбез любителям пересветки, часть 2

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

И снова всем привет!
Как и обещал, в этот раз я в двух словах расскажу о правилах включения светодиодов в электрическую цепь, о расчете режима работы светодиодов, выборе токоограничительных резисторов для них, а также о расшифровке цветового кода выводных резисторов.

О питании светодиодов в интернете информации масса, но, к сожалению, многие авторы собственных конструкций часто допускают ошибки, главная из которых допускается при включении в общую цепь нескольких светодиодов одновременно. Для начала разберем включение одного светодиода для работы от напряжения 12В, но перед этим определимся в терминологии.

Как я успел заметить, народ часто путает последовательное и параллельное соединение каких-либо элементов электрической цепи. Рассмотрим, ху из ху.

1. Последовательное соединение

Последовательно — это цепочкой, друг за другом, когда один вывод предыдущей детали соединен только с одним выводом следующей. Наглядный пример — хоровод:)

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Главные особенности такого соединения:

— в случае с лампочками или светодиодами, они должны быть одинаковыми, рассчитанными на одно и то же напряжение и ток, иначе одни из них гореть не будут, а другие станут гореть слишком ярко, вплоть до перегорания;
— сумма напряжений, на которые рассчитана каждая лампочка, должна быть равна (в идеале) или примерно равна (на практике) напряжению батареи. Или же, с другой стороны, на каждой лампочке будет напряжение, равное напряжению батареи, деленному на число лампочек. Или же с третьей стороны: сумма напряжений на всех элементах последовательной цепи равна напряжению питания;
— в любом участке цепи будет протекать один и тот же ток;
— при перегорании любой лампочки погаснут все сразу, потому как цепь разорвется.

2. Параллельное соединение — все элементы цепи соединены так, что из двух выводов одни соединяются в один проводник, другие в другой. Наглядный пример — девушка и молодой человек держат друг друга за руки, стоя лицом к лицу:))) Ну, или дети, играющие в «паровозик».

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Главные особенности:
— лампочки могут быть разной мощности, на разные токи, но на одинаковое напряжение, равное (в идеале) или примерно равное (на практике) напряжению батареи;
— на любом элементе будет одно и то же напряжение;
— ток, потребляемый от батареи равен сумме токов всех лампочек;
— при перегорании любой лампочки остальные продолжат гореть.

Есть еще и третий вариант соединения — соединение смешанное, когда несколько последовательных цепей соединены параллельно и наоборот.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

В таком соединении каждый тип цепи имеет те же главные особенности, что и по отдельности. Кстати, если присмотреться, то цепь, показанная на рисунке 1, тоже является примером смешанного соединения: последовательная цепь лампочек подключена параллельно батарее:)))

Переходим к главному — к светодиодам. Лампочки в подсветке, например, приборной панели VDO 2110, соединены параллельно, каждая лампа рассчитана на напряжение 12В (для лампочки ее рабочее напряжение — определяющий параметр, мощность и число их зависит только от мощности источника питания) и может подключаться к питанию напрямую. Со светодиодом все иначе. При работе светодиода в расчетном, штатном режиме напряжение на нем обычно равно 3…3,3В, но определяющим параметром для него является не напряжение, а ток. Свойства полупроводника таково, что при плавном подъеме напряжения на нем, скажем, с помощью реостата регулировки подсветки, оно начинает расти от нуля до определенной величины (для светодиода это упомянутые 3…3,3В), после чего напряжение остается практически неизменным, дальше растет только ток. И когда он превысит некоторую величину, светодиод перегорает. Если подать на светодиод напряжение прямо с аккумулятора, оно-таки будет составлять 12 вольт, но срок жизни диода будет определяться секундами, если не долями секунд.

Чтобы светодиод стал работать от 12В, необходимо ограничить его ток, чтобы он не превышал максимально допустимого для светодиода значения. Это можно сделать несколькими способами: с помощью токоограничивающего резистора, стабилизатора тока, широтно-импульсной модуляции. Так как все это я пишу в расчете на начинающих, два последних способа мы опустим — тем, кто «в танке», это все уже не нужно — и рассмотрим метод расчета токоограничивающего резистора.

Для того, чтобы уменьшить, ограничить ток в цепи светодиода, нам нужно увеличить сопротивление этой цепи. Вспоминаем закон господина Ома:

где: I — ток, U — напряжение, R — сопротивление

Напряжение у нас всегда одно — 12В. Кто-то возразит — не 12, а 14,4В. Скажем, так: напряжение у нас всегда равно напряжению бортовой сети автомобиля, но чтобы уберечь светодиоды от выхода из строя, все расчеты будем делать для максимального напряжения — 14,4В. Так вот, напряжение у нас всегда одно и то же — 14,4В. Номинальный ток современных светодиодов обычно составляет 10…20 мА. Это (как, впрочем, и рабочее прямое падение напряжения на светодиоде — 3…3,3В величина, усредненная для основной массы белых-синих-красных-зеленых-RGB светодиодов в SMD исполнении) лучше уточнить по даташиту, если известен тип светодиода. Если же тип неизвестен, лучше принять значение 10 мА — светить будет послабее, зато точно не сгорит от перегрузки по току.

Чтобы увеличить сопротивление цепи светодиода, последовательно с ним включается токоограничивающий резистор:

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Для определения его номинала узнаем, сколько вольт должно упасть на резисторе. Вспоминаем правило последовательной цепи: сумма напряжений на всех элементах равна напряжению питания. Питание у нас 14,4В. Номинальное напряжение на светодиоде — 3,3В.

Именно такое напряжение должно быть на резисторе — 11,1В. Ток, протекающий в цепи (в том числе, и через светодиод) равен 10…20 мА. Например, для SMD-светодиода типоразмера 3528 номинальный ток равен обычно 20 мА, но для пущей сохранности возьмем немного меньше — 15мА. Выведем сопротивление из формулы закона Ома:

Напряжение на резисторе мы посчитали — 11,1В, ток через светодиод, а следовательно, и через резистор, мы выбрали — 15мА. Сопротивление резистора R = 11,1В / 15мА = 0,74 кОм. Вообще, если делать все по всем правилам, ток должен быть задан в амперах, при этом значение сопротивления получится в омах: 11,1В / 0,015А = 740 Ом. Что, по сути, то же самое:) Ближайший стандартный номинал к рассчитанной величине — 750 Ом. Расчет закончен.

Полезно бывает посчитать мощность резистора для уверенности, что он выдержит. Для этого нужно ток через резистор (на этот раз удобнее уже в амперах:) ) умножить на напряжение на нем: 11,1В * 0,015А = 0,17 Вт (округленно). Теперь расчет совсем закончен — чтобы запитать один светодиод, нам нужен резистор мощностью 0,25 Вт (ближайшее вверх стандартное значение) сопротивлением 750 Ом.

Для удобства сведу все в одну кучу, пусть шпаргалка будет:

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Вместо резистора в цепь можно включить стабилизатор тока, простых схем сейчас много в сети. Может быть, когда-нибудь руки дойдут до их описания.

Чаще всего при пересветке всяческих панелей (приборных, печек и т.п.) светодиоды объединяют в группы (обычно по три, реже — по два), при этом экономятся резисторы. И вот тут самое главное правило: светодиоды в группе необходимо соединять только последовательно!

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Почему? Все просто. В последовательной цепи через все элементы течет один и тот же ток, который мы можем точно определить и задать с помощью резистора. В параллельной же мы можем задать только общий ток всей цепи, он будет равен сумме токов через светодиоды. Идеального на свете ничего нет, светодиоды тоже имеют разброс параметров: одни потребляют меньший ток, другие больший и может получиться так, что при токе через три «неправильных» светодиода 45 мА (по 15 мА на каждого — вроде справедливо, правда?), но сильном разбросе их параметров на два из диодов может прийтись по 10 мА, а вот третьему достанутся оставшиеся 25, он обидится один раз — и все. А в сумме получатся те же 45 мА.
Так что вот оно, самое железное правило: несколько светодиодов с одним резистором — только последовательно. А вот эти группы между собой соединяем уже параллельно, потому как каждая из них будет рассчитана на 14,4В.

Расчет для группы из двух-трех диодов ничем не отличается от приведенного, только при расчете напряжения на резисторе из напряжения питания нужно вычитать сумму напряжений всех светодиодов в группе (6,6В — для двух, 9,9 — для трех). Сопротивление и мощность вычисляются одинаково.

На этом, собственно, все:)

Ну и напоследок, обещанная таблица цветовой кодировки резисторов и онлайн-сервис для ее расшифровки.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Спасибо за внимание! Всем правильных схем и хорошего настроения:) До новых встреч в эфире!

Источник

Простые электронные ограничители тока

Infineon IRF9540N

В. И. Иволгин, г. Тамбов

Любое электронное устройство имеет источник питания, за счет энергии которого оно выполняет свои функции. И неудивительно, что в печати значительное место отводится их описаниям, рекомендациям по конструированию, рассмотрению работы отдельных узлов, предложениям по их улучшению.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Следует отметить, что современные источники питания, как правило, обладают довольно низким выходным сопротивлением. И по этой причине в нештатных ситуациях, даже при низких напряжениях на их выходе, не исключены значительные токовые перегрузки, приводящие к повреждению источника или самого устройства. В связи с этим источники питания, как правило, снабжаются системами защиты. Они достаточно разнообразны, обладают большей или меньшей автономностью относительно конструкции самого источника.

Один из вариантов такого устройства, которое можно использовать в виде самостоятельного узла, предлагается в [1]. Его принцип действия основан на ограничении потребляемого тока, в качестве датчика которого применяется низкоомный резистор, включенный последовательно в один из проводов между источником питания и нагрузкой. Напряжение с датчика, пропорциональное потребляемому току, после усиления используется для управления проходным транзистором. Изменением в нужный момент режима его работы и выполняется непосредственная защита от перегрузки.

В указанной статье в качестве прототипа приводится хорошо известная структура на двух биполярных транзисторах (Рисунок 1). Основной недостаток устройства – значительное падение напряжения на нем, которое достигает максимального значения при предельном рабочем токе. По данным автора, оно составляет примерно 1.6 В, причем на проходном транзисторе VT1 падает около 1 В, а на токовом датчике Rs – остальные 0.6 В. В связи с чем автором предлагается другая схема, которая позволяет снизить падение напряжения на нем до 0.235 В при токе ограничения в 1.3 А. Это значение достаточно мало, правда достигается оно использованием более сложной схемы, содержащей около 20 элементов [1].

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 1.Принципиальная схема прототипа
ограничителя тока.

С другой стороны, эта конструкция, по сравнению с предложенной автором, привлекает своей простотой. И в связи с этим возникает вопрос: а можно ли, оставаясь в рамках такой простой структуры, добиться снижения падения напряжения на подобном предохранителе без ее заметного усложнения? И каким образом?

Как следует из приведенных числовых данных по прототипу, наибольшее падение напряжения приходится на проходной биполярный транзистор VT1. Анализ показывает, что при подобном включении добиться его насыщения, и тем самым достичь малых значений падения напряжения, невозможно без дополнительного источника питания. Но его введение только для этой цели было бы накладным. И хотя можно было бы, наверное, предложить и какие-то другие способы уменьшения этих потерь на VT1, будет рациональнее сразу произвести замену биполярного транзистора на полевой с низким значением сопротивления канала. Это позволит уменьшить как падение напряжения на регулирующем транзисторе, так и собственное потребление ограничителя за счет снижения токов управления. Кроме того, целесообразно изменить связи между транзисторами так, чтобы преобразовать ограничитель в систему двух усилительных каскадов, вместо лишь одного в исходной структуре. В конечном итоге принципиальная схема исследуемого ограничителя будет выглядеть уже так (Рисунок 2), которую можно рассматривать и как упрощенный вариант устройства, приведенного в [2].

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 2.Принципиальная схема преобразованного
ограничителя тока.

Проверка работоспособности предлагаемого ограничителя, а также выполнение измерений, проводились на макете, в котором использовались в качестве VT1 полевой транзистор IRF9540, установленный на радиаторе, VT2 – транзистор SS8550 с β ≈ 300, RS – резистор 1.2 Ом, R1 – 4.2 кОм, а нагрузкой являлся набор переменных проволочных резисторов необходимой мощности. Напряжение на входе ограничителя составляло 12 В. Результаты измерений приведены на Рисунке 3.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 3.Зависимость падений напряжения на датчике
тока RS и проходном транзисторе VT1 на
начальной стадии ограничения.

Испытание ограничителя коротким замыканием показало, что при выполнении этой манипуляции ток через проходной транзистор устанавливается на уровне 0.5 А при напряжении на токовом датчике 0.60 В. И, таким образом, подобный ограничитель тока вполне работоспособен. Можно также отметить его довольно высокое выходное сопротивление в режиме ограничения тока – при изменении напряжения на его выходе в интервале 0…11.3 В ток через нагрузку практически остается равным 0.5 А. Кроме того, в связи с известной зависимостью параметров транзисторов от температуры, была проконтролирована зависимость значения ограничения тока от нагрева VT2. Как оказалось, ее величина составила всего около –0.2% относительной погрешности на градус.

Из анализа графиков следует, что падение напряжения на проходном транзисторе этой конструкции уже достаточно мало и даже на краю токового диапазона не превышает 0.1 В. Можно так же отметить, что на графике зависимости падения напряжения на VT1 визуально можно выделить два интервала. На первом из них, при токах от 0 до 0.45 А, рост падения напряжения является его линейной функцией, что указывает на насыщение транзистора в этой части диапазона. И действительно, вычисленное по этим данным сопротивление канала транзистора составляет приблизительно 0.125 Ом, что практически совпадает с паспортными данными используемого транзистора VT1. При бóльших же токах, в интервале 0.45 – 0.5 А, происходит сначала медленный, а затем резкий нелинейный рост этой величины, связанный уже с включением механизма ограничения тока.

Таким образом, из приведенных выше данных следует, что общее падение напряжения на ограничителе заметно снизилось, и уже определяется в основном не падением напряжения на VT1, а напряжением датчика RS. Каким же образом можно уменьшить последнюю величину?

Ответ напрашивается сам собой – нужно уменьшить значение RS, как это и сделано в [1], а для компенсации снижения уровня сигнала датчика использовать дополнительный усилитель. Но с другой стороны, и в рассмотренной выше схеме (Рисунок 2) такой усилитель, выполненный на транзисторе VT2, уже есть. Тем не менее, его параметры не позволяют снизить падение напряжения RS до меньших значений, хотя он и обладает достаточно высоким коэффициентом усиления. В связи с этой проблемой рассмотрим подробнее особенности работы VT2 в роли предварительного усилителя сигнала с датчика тока.

Как следует из принципиальной схемы (Рисунок 2), ограничение тока через VT1 происходит за счет изменения напряжения на его затворе, возникающего при изменении коллекторного тока транзистора VT2. Управление же его режимом осуществляется напряжением с резистора датчика тока RS. И, как следует из данных последних измерений (Рисунок 3), выход устройства на полное ограничение тока происходит только при напряжениях около 0.6 В на его базе относительно эмиттера. Этим обстоятельством и определяется величина сопротивления резистора RS.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 4.Принципиальная схема ограничителя
тока со сниженным падением напряжения
на резистивном датчике.

Новая редакция принципиальной схемы ограничителя, уже с учетом изложенных соображений, представлена на Рисунке 4. Его макет для испытаний был выполнен с сохранением деталей устройства предыдущей версии с изменением сопротивления RS на 0.2 Ом, а установленные дополнительные резисторы R2 и R3 имеют значения, соответственно, 680 Ом и 15 кОм. Условия проведения испытаний и измерений сохранены теми же, что и ранее.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 5.Зависимость падения напряжения на RS и
проходном транзисторе VT1.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Далее, допустив, что в режиме ограничения сумма падений напряжения на RS и R2 будет равняться 0.6 В, как это следует из результатов предшествующих измерений (Рисунок 3), получим уравнение:

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока(1),

из которого следует, что

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока(2).

При VВХ = 12 В и R3 = 15 кОм получаем, что R2 = 0.58 кОм.

При необходимости этим резистором, если его заменить на переменный, можно будет оперативно менять ток ограничения в значительных пределах, что, правда, будет сопровождаться изменением величины максимального падения напряжения VSM и соответствующего ему изменения температурного коэффициента нестабильности.

Подводя итог обсуждению вопроса о конструкции простого ограничителя тока (Рисунок 4), можно сделать вывод о том, что изменения, внесенные в структуру прототипа (Рисунок 1), в конечном итоге, позволили снизить потери напряжения на нем до десятых долей вольта. Следует также добавить, что его работа выборочно была проверена и в других режимах, не отраженных в статье. В частности, при токах ограничения в диапазоне от 10 мА до 5 А и входных напряжениях 7, 12 и 20 В. Для адаптации к этим условиям изменялись лишь значения RS ( 0.05, 0.2 и 1.2 Ом), а для задания тока ограничения в качестве R2 использовался переменный резистор на 1 кОм, сопротивление которого устанавливалось в соответствии с расчетом по (2). Все остальные элементы, включая и транзисторы, оставались прежними.

Источник

Как ограничить ток в цепи постоянного тока

Infineon IRF9540N

В. И. Иволгин, г. Тамбов

Любое электронное устройство имеет источник питания, за счет энергии которого оно выполняет свои функции. И неудивительно, что в печати значительное место отводится их описаниям, рекомендациям по конструированию, рассмотрению работы отдельных узлов, предложениям по их улучшению.

Следует отметить, что современные источники питания, как правило, обладают довольно низким выходным сопротивлением. И по этой причине в нештатных ситуациях, даже при низких напряжениях на их выходе, не исключены значительные токовые перегрузки, приводящие к повреждению источника или самого устройства. В связи с этим источники питания, как правило, снабжаются системами защиты. Они достаточно разнообразны, обладают большей или меньшей автономностью относительно конструкции самого источника.

Один из вариантов такого устройства, которое можно использовать в виде самостоятельного узла, предлагается в [1]. Его принцип действия основан на ограничении потребляемого тока, в качестве датчика которого применяется низкоомный резистор, включенный последовательно в один из проводов между источником питания и нагрузкой. Напряжение с датчика, пропорциональное потребляемому току, после усиления используется для управления проходным транзистором. Изменением в нужный момент режима его работы и выполняется непосредственная защита от перегрузки.

В указанной статье в качестве прототипа приводится хорошо известная структура на двух биполярных транзисторах (Рисунок 1). Основной недостаток устройства – значительное падение напряжения на нем, которое достигает максимального значения при предельном рабочем токе. По данным автора, оно составляет примерно 1.6 В, причем на проходном транзисторе VT1 падает около 1 В, а на токовом датчике Rs – остальные 0.6 В. В связи с чем автором предлагается другая схема, которая позволяет снизить падение напряжения на нем до 0.235 В при токе ограничения в 1.3 А. Это значение достаточно мало, правда достигается оно использованием более сложной схемы, содержащей около 20 элементов [1].

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 1.Принципиальная схема прототипа
ограничителя тока.

С другой стороны, эта конструкция, по сравнению с предложенной автором, привлекает своей простотой. И в связи с этим возникает вопрос: а можно ли, оставаясь в рамках такой простой структуры, добиться снижения падения напряжения на подобном предохранителе без ее заметного усложнения? И каким образом?

Как следует из приведенных числовых данных по прототипу, наибольшее падение напряжения приходится на проходной биполярный транзистор VT1. Анализ показывает, что при подобном включении добиться его насыщения, и тем самым достичь малых значений падения напряжения, невозможно без дополнительного источника питания. Но его введение только для этой цели было бы накладным. И хотя можно было бы, наверное, предложить и какие-то другие способы уменьшения этих потерь на VT1, будет рациональнее сразу произвести замену биполярного транзистора на полевой с низким значением сопротивления канала. Это позволит уменьшить как падение напряжения на регулирующем транзисторе, так и собственное потребление ограничителя за счет снижения токов управления. Кроме того, целесообразно изменить связи между транзисторами так, чтобы преобразовать ограничитель в систему двух усилительных каскадов, вместо лишь одного в исходной структуре. В конечном итоге принципиальная схема исследуемого ограничителя будет выглядеть уже так (Рисунок 2), которую можно рассматривать и как упрощенный вариант устройства, приведенного в [2].

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 2.Принципиальная схема преобразованного
ограничителя тока.

Проверка работоспособности предлагаемого ограничителя, а также выполнение измерений, проводились на макете, в котором использовались в качестве VT1 полевой транзистор IRF9540, установленный на радиаторе, VT2 – транзистор SS8550 с β ≈ 300, RS – резистор 1.2 Ом, R1 – 4.2 кОм, а нагрузкой являлся набор переменных проволочных резисторов необходимой мощности. Напряжение на входе ограничителя составляло 12 В. Результаты измерений приведены на Рисунке 3.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 3.Зависимость падений напряжения на датчике
тока RS и проходном транзисторе VT1 на
начальной стадии ограничения.

Испытание ограничителя коротким замыканием показало, что при выполнении этой манипуляции ток через проходной транзистор устанавливается на уровне 0.5 А при напряжении на токовом датчике 0.60 В. И, таким образом, подобный ограничитель тока вполне работоспособен. Можно также отметить его довольно высокое выходное сопротивление в режиме ограничения тока – при изменении напряжения на его выходе в интервале 0…11.3 В ток через нагрузку практически остается равным 0.5 А. Кроме того, в связи с известной зависимостью параметров транзисторов от температуры, была проконтролирована зависимость значения ограничения тока от нагрева VT2. Как оказалось, ее величина составила всего около –0.2% относительной погрешности на градус.

Из анализа графиков следует, что падение напряжения на проходном транзисторе этой конструкции уже достаточно мало и даже на краю токового диапазона не превышает 0.1 В. Можно так же отметить, что на графике зависимости падения напряжения на VT1 визуально можно выделить два интервала. На первом из них, при токах от 0 до 0.45 А, рост падения напряжения является его линейной функцией, что указывает на насыщение транзистора в этой части диапазона. И действительно, вычисленное по этим данным сопротивление канала транзистора составляет приблизительно 0.125 Ом, что практически совпадает с паспортными данными используемого транзистора VT1. При бóльших же токах, в интервале 0.45 – 0.5 А, происходит сначала медленный, а затем резкий нелинейный рост этой величины, связанный уже с включением механизма ограничения тока.

Таким образом, из приведенных выше данных следует, что общее падение напряжения на ограничителе заметно снизилось, и уже определяется в основном не падением напряжения на VT1, а напряжением датчика RS. Каким же образом можно уменьшить последнюю величину?

Ответ напрашивается сам собой – нужно уменьшить значение RS, как это и сделано в [1], а для компенсации снижения уровня сигнала датчика использовать дополнительный усилитель. Но с другой стороны, и в рассмотренной выше схеме (Рисунок 2) такой усилитель, выполненный на транзисторе VT2, уже есть. Тем не менее, его параметры не позволяют снизить падение напряжения RS до меньших значений, хотя он и обладает достаточно высоким коэффициентом усиления. В связи с этой проблемой рассмотрим подробнее особенности работы VT2 в роли предварительного усилителя сигнала с датчика тока.

Как следует из принципиальной схемы (Рисунок 2), ограничение тока через VT1 происходит за счет изменения напряжения на его затворе, возникающего при изменении коллекторного тока транзистора VT2. Управление же его режимом осуществляется напряжением с резистора датчика тока RS. И, как следует из данных последних измерений (Рисунок 3), выход устройства на полное ограничение тока происходит только при напряжениях около 0.6 В на его базе относительно эмиттера. Этим обстоятельством и определяется величина сопротивления резистора RS.

Но характерно, что часть напряжения на датчике в диапазоне от 0 до 0.55 В можно считать «лишней», поскольку в этом интервале VT2 практически не «чувствует» его, а по настоящему «рабочим» для него будет только интервал 0.55 — 0.6 В. Сдвинув же нижнюю границу чувствительности усилителя, визуально составляющую 0.55 В, к нулю, можно будет решить проблему снижения значения RS.

Технически этого результата можно достичь, например, вводом в цепь между базой VT2 и правым выводом RS отдельного вспомогательного источника напряжением 0.55 В. Но удобнее сформировать его применением делителя из двух резисторов, включенных между общим проводом и эмиттером транзистора VT1 (резисторы R2, R3, Рисунок 4). И его параметры должны обеспечивать падение напряжения на R2, равное 0.55 В. Для меньшей зависимости этой величины от входного тока транзистора ток этого делителя желательно выдерживать в пределах 0.5 — 1 мА. При этих условиях уже незначительное напряжение на RS переведет транзистор VT2 в активный режим начала ограничения, а полное ограничение тока произойдет при падения напряжения на RS всего лишь немногим более 0.05 В. Понятно, что изменением этих резисторов можно будет изменять порог ограничения тока. И это будет удобнее, чем подбирать величину RS.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 4.Принципиальная схема ограничителя
тока со сниженным падением напряжения
на резистивном датчике.

Новая редакция принципиальной схемы ограничителя, уже с учетом изложенных соображений, представлена на Рисунке 4. Его макет для испытаний был выполнен с сохранением деталей устройства предыдущей версии с изменением сопротивления RS на 0.2 Ом, а установленные дополнительные резисторы R2 и R3 имеют значения, соответственно, 680 Ом и 15 кОм. Условия проведения испытаний и измерений сохранены теми же, что и ранее.

Основные результаты испытаний, как следует из представленных графиков (Рисунок 5), сводятся к следующему. Как и ранее, ток короткого замыкания устройства составляет 0.5 А. Точнее, реально при указанных значениях резисторов R2, R3, он составил 0.48 А, но это значение было скорректировано включением последовательно с R3 дополнительного переменного резистора. Что касается максимального значения падения напряжения на датчике RS, то оно упало пропорционально уменьшению величины установленного RS и составило всего около 0.1 В. График падения напряжения на регулирующем транзисторе, по сравнению с аналогичным параметром предыдущей схемы, в общем, сохранил свои черты, хотя и несколько изменился. Так, например, следует обратить внимание на то, что в этот раз область резко нелинейного роста падения напряжения на проходном транзисторе сместилась в диапазон 0.4 — 0.5 А, а в остальной – растет практически линейно. Из этого следует, что определенный резерв по снижению падения напряжения на датчике тока RS еще есть.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 5.Зависимость падения напряжения на RS и
проходном транзисторе VT1.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Далее, допустив, что в режиме ограничения сумма падений напряжения на RS и R2 будет равняться 0.6 В, как это следует из результатов предшествующих измерений (Рисунок 3), получим уравнение:

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока(1),

из которого следует, что

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока(2).

При VВХ = 12 В и R3 = 15 кОм получаем, что R2 = 0.58 кОм.

При необходимости этим резистором, если его заменить на переменный, можно будет оперативно менять ток ограничения в значительных пределах, что, правда, будет сопровождаться изменением величины максимального падения напряжения VSM и соответствующего ему изменения температурного коэффициента нестабильности.

Подводя итог обсуждению вопроса о конструкции простого ограничителя тока (Рисунок 4), можно сделать вывод о том, что изменения, внесенные в структуру прототипа (Рисунок 1), в конечном итоге, позволили снизить потери напряжения на нем до десятых долей вольта. Следует также добавить, что его работа выборочно была проверена и в других режимах, не отраженных в статье. В частности, при токах ограничения в диапазоне от 10 мА до 5 А и входных напряжениях 7, 12 и 20 В. Для адаптации к этим условиям изменялись лишь значения RS ( 0.05, 0.2 и 1.2 Ом), а для задания тока ограничения в качестве R2 использовался переменный резистор на 1 кОм, сопротивление которого устанавливалось в соответствии с расчетом по (2). Все остальные элементы, включая и транзисторы, оставались прежними.

Infineon IRF9540N

В. И. Иволгин, г. Тамбов

Любое электронное устройство имеет источник питания, за счет энергии которого оно выполняет свои функции. И неудивительно, что в печати значительное место отводится их описаниям, рекомендациям по конструированию, рассмотрению работы отдельных узлов, предложениям по их улучшению.

Следует отметить, что современные источники питания, как правило, обладают довольно низким выходным сопротивлением. И по этой причине в нештатных ситуациях, даже при низких напряжениях на их выходе, не исключены значительные токовые перегрузки, приводящие к повреждению источника или самого устройства. В связи с этим источники питания, как правило, снабжаются системами защиты. Они достаточно разнообразны, обладают большей или меньшей автономностью относительно конструкции самого источника.

Один из вариантов такого устройства, которое можно использовать в виде самостоятельного узла, предлагается в [1]. Его принцип действия основан на ограничении потребляемого тока, в качестве датчика которого применяется низкоомный резистор, включенный последовательно в один из проводов между источником питания и нагрузкой. Напряжение с датчика, пропорциональное потребляемому току, после усиления используется для управления проходным транзистором. Изменением в нужный момент режима его работы и выполняется непосредственная защита от перегрузки.

В указанной статье в качестве прототипа приводится хорошо известная структура на двух биполярных транзисторах (Рисунок 1). Основной недостаток устройства – значительное падение напряжения на нем, которое достигает максимального значения при предельном рабочем токе. По данным автора, оно составляет примерно 1.6 В, причем на проходном транзисторе VT1 падает около 1 В, а на токовом датчике Rs – остальные 0.6 В. В связи с чем автором предлагается другая схема, которая позволяет снизить падение напряжения на нем до 0.235 В при токе ограничения в 1.3 А. Это значение достаточно мало, правда достигается оно использованием более сложной схемы, содержащей около 20 элементов [1].

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 1.Принципиальная схема прототипа
ограничителя тока.

С другой стороны, эта конструкция, по сравнению с предложенной автором, привлекает своей простотой. И в связи с этим возникает вопрос: а можно ли, оставаясь в рамках такой простой структуры, добиться снижения падения напряжения на подобном предохранителе без ее заметного усложнения? И каким образом?

Как следует из приведенных числовых данных по прототипу, наибольшее падение напряжения приходится на проходной биполярный транзистор VT1. Анализ показывает, что при подобном включении добиться его насыщения, и тем самым достичь малых значений падения напряжения, невозможно без дополнительного источника питания. Но его введение только для этой цели было бы накладным. И хотя можно было бы, наверное, предложить и какие-то другие способы уменьшения этих потерь на VT1, будет рациональнее сразу произвести замену биполярного транзистора на полевой с низким значением сопротивления канала. Это позволит уменьшить как падение напряжения на регулирующем транзисторе, так и собственное потребление ограничителя за счет снижения токов управления. Кроме того, целесообразно изменить связи между транзисторами так, чтобы преобразовать ограничитель в систему двух усилительных каскадов, вместо лишь одного в исходной структуре. В конечном итоге принципиальная схема исследуемого ограничителя будет выглядеть уже так (Рисунок 2), которую можно рассматривать и как упрощенный вариант устройства, приведенного в [2].

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 2.Принципиальная схема преобразованного
ограничителя тока.

Проверка работоспособности предлагаемого ограничителя, а также выполнение измерений, проводились на макете, в котором использовались в качестве VT1 полевой транзистор IRF9540, установленный на радиаторе, VT2 – транзистор SS8550 с β ≈ 300, RS – резистор 1.2 Ом, R1 – 4.2 кОм, а нагрузкой являлся набор переменных проволочных резисторов необходимой мощности. Напряжение на входе ограничителя составляло 12 В. Результаты измерений приведены на Рисунке 3.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 3.Зависимость падений напряжения на датчике
тока RS и проходном транзисторе VT1 на
начальной стадии ограничения.

Испытание ограничителя коротким замыканием показало, что при выполнении этой манипуляции ток через проходной транзистор устанавливается на уровне 0.5 А при напряжении на токовом датчике 0.60 В. И, таким образом, подобный ограничитель тока вполне работоспособен. Можно также отметить его довольно высокое выходное сопротивление в режиме ограничения тока – при изменении напряжения на его выходе в интервале 0…11.3 В ток через нагрузку практически остается равным 0.5 А. Кроме того, в связи с известной зависимостью параметров транзисторов от температуры, была проконтролирована зависимость значения ограничения тока от нагрева VT2. Как оказалось, ее величина составила всего около –0.2% относительной погрешности на градус.

Из анализа графиков следует, что падение напряжения на проходном транзисторе этой конструкции уже достаточно мало и даже на краю токового диапазона не превышает 0.1 В. Можно так же отметить, что на графике зависимости падения напряжения на VT1 визуально можно выделить два интервала. На первом из них, при токах от 0 до 0.45 А, рост падения напряжения является его линейной функцией, что указывает на насыщение транзистора в этой части диапазона. И действительно, вычисленное по этим данным сопротивление канала транзистора составляет приблизительно 0.125 Ом, что практически совпадает с паспортными данными используемого транзистора VT1. При бóльших же токах, в интервале 0.45 – 0.5 А, происходит сначала медленный, а затем резкий нелинейный рост этой величины, связанный уже с включением механизма ограничения тока.

Таким образом, из приведенных выше данных следует, что общее падение напряжения на ограничителе заметно снизилось, и уже определяется в основном не падением напряжения на VT1, а напряжением датчика RS. Каким же образом можно уменьшить последнюю величину?

Ответ напрашивается сам собой – нужно уменьшить значение RS, как это и сделано в [1], а для компенсации снижения уровня сигнала датчика использовать дополнительный усилитель. Но с другой стороны, и в рассмотренной выше схеме (Рисунок 2) такой усилитель, выполненный на транзисторе VT2, уже есть. Тем не менее, его параметры не позволяют снизить падение напряжения RS до меньших значений, хотя он и обладает достаточно высоким коэффициентом усиления. В связи с этой проблемой рассмотрим подробнее особенности работы VT2 в роли предварительного усилителя сигнала с датчика тока.

Как следует из принципиальной схемы (Рисунок 2), ограничение тока через VT1 происходит за счет изменения напряжения на его затворе, возникающего при изменении коллекторного тока транзистора VT2. Управление же его режимом осуществляется напряжением с резистора датчика тока RS. И, как следует из данных последних измерений (Рисунок 3), выход устройства на полное ограничение тока происходит только при напряжениях около 0.6 В на его базе относительно эмиттера. Этим обстоятельством и определяется величина сопротивления резистора RS.

Но характерно, что часть напряжения на датчике в диапазоне от 0 до 0.55 В можно считать «лишней», поскольку в этом интервале VT2 практически не «чувствует» его, а по настоящему «рабочим» для него будет только интервал 0.55 — 0.6 В. Сдвинув же нижнюю границу чувствительности усилителя, визуально составляющую 0.55 В, к нулю, можно будет решить проблему снижения значения RS.

Технически этого результата можно достичь, например, вводом в цепь между базой VT2 и правым выводом RS отдельного вспомогательного источника напряжением 0.55 В. Но удобнее сформировать его применением делителя из двух резисторов, включенных между общим проводом и эмиттером транзистора VT1 (резисторы R2, R3, Рисунок 4). И его параметры должны обеспечивать падение напряжения на R2, равное 0.55 В. Для меньшей зависимости этой величины от входного тока транзистора ток этого делителя желательно выдерживать в пределах 0.5 — 1 мА. При этих условиях уже незначительное напряжение на RS переведет транзистор VT2 в активный режим начала ограничения, а полное ограничение тока произойдет при падения напряжения на RS всего лишь немногим более 0.05 В. Понятно, что изменением этих резисторов можно будет изменять порог ограничения тока. И это будет удобнее, чем подбирать величину RS.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 4.Принципиальная схема ограничителя
тока со сниженным падением напряжения
на резистивном датчике.

Новая редакция принципиальной схемы ограничителя, уже с учетом изложенных соображений, представлена на Рисунке 4. Его макет для испытаний был выполнен с сохранением деталей устройства предыдущей версии с изменением сопротивления RS на 0.2 Ом, а установленные дополнительные резисторы R2 и R3 имеют значения, соответственно, 680 Ом и 15 кОм. Условия проведения испытаний и измерений сохранены теми же, что и ранее.

Основные результаты испытаний, как следует из представленных графиков (Рисунок 5), сводятся к следующему. Как и ранее, ток короткого замыкания устройства составляет 0.5 А. Точнее, реально при указанных значениях резисторов R2, R3, он составил 0.48 А, но это значение было скорректировано включением последовательно с R3 дополнительного переменного резистора. Что касается максимального значения падения напряжения на датчике RS, то оно упало пропорционально уменьшению величины установленного RS и составило всего около 0.1 В. График падения напряжения на регулирующем транзисторе, по сравнению с аналогичным параметром предыдущей схемы, в общем, сохранил свои черты, хотя и несколько изменился. Так, например, следует обратить внимание на то, что в этот раз область резко нелинейного роста падения напряжения на проходном транзисторе сместилась в диапазон 0.4 — 0.5 А, а в остальной – растет практически линейно. Из этого следует, что определенный резерв по снижению падения напряжения на датчике тока RS еще есть.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
Рисунок 5.Зависимость падения напряжения на RS и
проходном транзисторе VT1.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Далее, допустив, что в режиме ограничения сумма падений напряжения на RS и R2 будет равняться 0.6 В, как это следует из результатов предшествующих измерений (Рисунок 3), получим уравнение:

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока(1),

из которого следует, что

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока(2).

При VВХ = 12 В и R3 = 15 кОм получаем, что R2 = 0.58 кОм.

При необходимости этим резистором, если его заменить на переменный, можно будет оперативно менять ток ограничения в значительных пределах, что, правда, будет сопровождаться изменением величины максимального падения напряжения VSM и соответствующего ему изменения температурного коэффициента нестабильности.

Подводя итог обсуждению вопроса о конструкции простого ограничителя тока (Рисунок 4), можно сделать вывод о том, что изменения, внесенные в структуру прототипа (Рисунок 1), в конечном итоге, позволили снизить потери напряжения на нем до десятых долей вольта. Следует также добавить, что его работа выборочно была проверена и в других режимах, не отраженных в статье. В частности, при токах ограничения в диапазоне от 10 мА до 5 А и входных напряжениях 7, 12 и 20 В. Для адаптации к этим условиям изменялись лишь значения RS ( 0.05, 0.2 и 1.2 Ом), а для задания тока ограничения в качестве R2 использовался переменный резистор на 1 кОм, сопротивление которого устанавливалось в соответствии с расчетом по (2). Все остальные элементы, включая и транзисторы, оставались прежними.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Двухвыводной компонент позволяющий ограничить постоянный ток на уровне от десятых долей миллиампера до десятков миллиампер является простым решением для множества цепей электрических схем. Компонент, о котором пойдет речь в этой статье, повышает устойчивость работы приборов, обладает низкой ценой, позволяет упростить разработку электрических схем и производство множества приборов. Полупроводниковый прибор в большинстве случаев имеет конструкцию корпуса, напоминающую диод малой мощности. Благодаря наличию всего двух выводов полупроводники этого класса упоминаются в документации производителей как диодные ограничители тока current limiting diodes, CLD встречается также наименование current regulator diodes, CRD. Внутренняя схема ограничителя тока не содержит диодов, такое название закрепилось только благодаря внешнему сходству корпуса прибора с диодом. Попытаюсь немного восполнить недостаток информации о свойствах и применении диодного ограничителя тока. Вспомним некоторые теоретические сведения для правильного применения прибора.

ВСПОМНИМ ЭЛЕКТРОТЕХНИКУ

Источники электропитания разделяются на источники ЭДС и источники тока. Идеализированный источник ЭДС обладает внутренним сопротивлением равным нулю, напряжение на его выходе равно ЭДС и не зависит от выходного тока, обусловленного нагрузкой. Идеализированный источник тока обладает двумя бесконечно большими параметрами: внутренним сопротивлением и ЭДС, которые связаны постоянным отношением – током. При возрастании сопротивления нагрузки возрастает ЭДС, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Существующие источники тока поддерживают ток на требуемом уровне в ограниченном диапазоне напряжения, создаваемого на нагрузке и в небольшом диапазоне сопротивления нагрузки. Идеализированный источник тока рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Одним из важных параметров любого источника тока, является диапазон сопротивления нагрузки. В реальности обеспечить ток в диапазоне сопротивления нагрузки от нуля до бесконечности невозможно и ненужно. К сопротивлению нагрузки прибавляются сопротивления контактов разъемов, проводов, сопротивление других элементов, следовательно, нагрузка с нулевым сопротивлением не существует. Бесконечно большое сопротивление означает, что нагрузка отсутствует и ток не протекает, напряжение на выходных клеммах источника тока равно максимальному значению. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и выйти на режим работы с номинальным сопротивлением нагрузки. Свойство источника тока обеспечить постоянный ток независимо от сопротивления нагрузки является весьма ценным, благодаря этому свойству существенно повышается надежность системы, в которой он применен. На практике источник тока – прибор, имеющий в своем составе источник ЭДС. Лабораторный блок питания, аккумулятор, солнечная батарея все это источники ЭДС, поставляющие электроэнергию потребителю. Последовательно с источником ЭДС включается стабилизатор или ограничитель тока. Выход этой группы последовательно соединенных приборов рассматривается как источник тока, применяющийся для питания электродвигателей, в системах гальванического нанесения покрытий на металлах, создания постоянных магнитных полей, питания обычных, сверхярких, лазерных светодиодов и многих других целей.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Простейший источник тока можно создать, используя диодный ограничитель тока. Величина ограничения тока и точность ограничения соответствуют документации, опубликованной фирмой изготовителем.

ПРИМЕРЫ И НЕКОТОРЫЕ ПАРАМЕТРЫ

Постоянство тока при изменении приложенного напряжения отражает динамическое сопротивление. Горизонтальный участок характеристики имеет небольшой наклон, который показывает отношение небольшого изменения напряжения к вызванному им небольшому изменению тока. Этот параметр носит название динамического сопротивления или дифференциального сопротивления по аналогии с законом Ома. При больших изменениях напряжения ток меняется незначительно, поэтому динамическое сопротивление диодного ограничителя тока измеряется в мегаомах. Чем выше значение этого параметра, тем лучше диодный ограничитель тока.

Диодные ограничители тока выпускаются многими производителями полупроводников.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

ПРИМЕНЕНИЕ

Схемного обозначения и наименование диодных ограничителей тока в соответствии с ГОСТ найти не удалось. В схемах статьи применяется обозначение обычного диода. Ток ограничения может отклоняться от номинального тока на величину до двадцати процентов. При изменении напряжения от двух вольт до напряжения пробоя ток ограничения также меняется на пять процентов. Чем выше ток ограничения, тем больше отклонение при увеличении напряжения. При параллельном включении нескольких диодных ограничителей можно получить тот же ток ограничения, что и при использовании одного, но при этом уменьшить минимально возможное рабочее напряжение при этом диапазон напряжения, в котором работает ограничитель, увеличивается.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Сравнивая графики вольтамперных характеристик идеального источника тока и диодного ограничителя тока заметно отличие при малом напряжении на выводах. Для нормальной работы диодного ограничителя тока необходимо напряжение более некоторого значения, как правило, это более двух вольт. При возрастании напряжения от нуля до уровня около двух вольт ток возрастает от нуля до величины ограничения тока, соответствующей типу ограничителя. Эта часть вольтамперной характеристики напоминает характеристику резистора. При дальнейшем возрастании напряжения ток не увеличивается – происходит ограничение тока. Другими словами ток может принимать значения от нуля плавно возрастая до величины ограничения. Чем ниже напряжение, при котором прибор переходит в режим ограничения тока, те удобнее применять его в разрабатываемых схемах. При дальнейшем возрастании напряжения наступит пробой примерно в диапазоне напряжений от пятидесяти до ста вольт в зависимости от типа ограничителя. Горизонтальная часть характеристики имеет наклон, отражающий некоторое изменение величины ограничения тока в зависимости от напряжения. Чем больше величина напряжения на выводах, тем сильнее величина ограничения тока отличается от паспортных данных тока. Напряжение на полюсах цепи состоящей из нагрузки и диодного ограничителя тока должно быть таким, чтобы обеспечить напряжение на выводах диодного ограничителя более полутора-двух вольт. Рассмотрим цепь, состоящую из диодного ограничителя тока и светодиодов. При напряжении питания 24 вольта на светодиодах должно быть не более двадцати двух вольт, иначе яркость снизится. Если схема требует уменьшения напряжения на светодиодах до полутора вольт (допустим, что нагрузкой является один светодиод), то напряжение на диодном ограничителе составит 22,5 вольта, что позволит ему находится в нормальном режиме работы и ниже критического напряжения пробоя с запасом напряжения для скачков питания. Так как яркость и оттенок свечения светодиода зависят от протекающего тока, то при включении диодного ограничителя тока в цепь питания светодиода обеспечивается правильный режим и надежность благодаря фиксации тока на требуемом уровне и работе в диапазоне напряжений от двух до ста вольт.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных ограничителей тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания. С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения, через выпрямитель и фильтр светодиодный светильник подключается к сети переменного напряжения.
Использование резистора в цепи питания светодиода индикатора включения системного блока персонального компьютера в сеть приводило к пробою светодиода. Применение диодного ограничителя тока позволило получить надежную работу индикатора. При этом индикатор подключается к разъему блока питания, что упрощает замену материнской платы

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Диодные ограничители тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов. При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного ограничителя тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала передачи информации. Применение диодного ограничителя тока задающего режим работы стабилитрона позволяет построить простой источник опорного напряжения. При изменении питающего тока на десять процентов напряжение на стабилитроне меняется на две десятых процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении питания схемы.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на сто децибел. Более дешевый источник опорного напряжения можно разработать, если заменить стабилитрон резистором. Ток фиксирован, следовательно, напряжение на резисторе изменяться не будет. При включении подстроечного резистора последовательно с постоянным резистором появляется возможность точно установить требуемую величину опорного напряжения, что нельзя сделать при использовании стабилитрона.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока
С помощью диодного ограничителя тока и конденсатора можно получить линейно меняющийся сигнал – напряжение, которое возрастает или убывает с постоянной скоростью. Ток, заряжающий или разряжающий конденсатор пропорционален скорости изменения напряжения на конденсаторе. Если ток фиксирован, то напряжение на конденсаторе изменяется с постоянной скоростью – линейно. Напряжение на конденсаторе U(t)=It/C, где I – ток ограничения диодного ограничителя тока, t – время протекания тока, С – емкость конденсатора. Например, если ток ограничения равен один миллиампер, а емкость конденсатора сто микрофарад то через одну секунду напряжение на конденсаторе достигнет величины в десять вольт. Линейное нарастание тока прекращается, когда напряжение на конденсаторе приближается к напряжению питания цепи с ограничителем тока. Эту времязадающую цепь применяют в схемах пилообразных и треугольных сигналов, в аналого-цифровых преобразователях, устройствах плавного пуска электроприборов и многих других.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Использование диодного ограничителя тока в схеме эмиттерного повторителя в цепи эмиттера увеличивает входное сопротивление транзистора, увеличивает усиление схемы и уменьшает рассеяние тепла при работе транзистора в критических режимах.

УСТРОЙСТВО ДИОДНОГО ОГРАНИЧИТЕЛЯ ТОКА

Основа прибора – полевой транзистор с p-n переходом и n-каналом. Напряжение затвор-исток определяет ток стока. При соединении затвора с истоком ток через транзистор равен начальному току стока, который течет при напряжении насыщения между стоком и истоком. Поэтому для нормальной работы диодного ограничителя тока напряжение, приложенное к выводам должно быть больше некоторого значения, равного напряжению насыщения полевого транзистора.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Полевые транзисторы имеют большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные ограничители тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком. Для уменьшения тока ограничения и увеличения динамического сопротивления в истоковую цепь включается резистор автоматического смещения, задающий обратное смещение затвора.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

При изменении напряжения приложенного между стоком и истоком от насыщения до пробоя ток почти не изменяется. Для получения тока ограничения требуемой величины сопротивление R резистора вычисляется по формуле:

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

где:
Uси нас. – напряжение насыщения сток-исток
Iогр – величина ограничения тока
Icток. нач. – начальный ток стока

При разработке ограничителя тока на основе полевого транзистора напряжение насыщения сток-исток можно получить из выходной характеристики полевого транзистора, начальный ток стока – справочная величина.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Выходная характеристика полевого транзистора с p-n переходом КП312А и n-каналом.

При смене полярности напряжения диодный ограничитель тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных ограничителей тока может достигать сто миллиампер.

ИСТОЧНИК ТОКА 0,5 А И БОЛЕЕ

Для стабилизации токов величиной 0,5-5 ампер и более можно применить схему, главный элемент которой мощный транзистор. Диодный ограничитель тока стабилизирует напряжение на резисторе 200 Ом и на базе транзистора. Изменение резистора R1 от 0,2 до10 Ом устанавливает ток, поступающий в нагрузку. Выбор тока стабилизации схемы ограничивает максимальный ток транзистора или максимальный ток источника питания. Применение диодного ограничителя тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного ограничителя тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, примененные в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 200 Ом можно заменить переменным. Для улучшения стабильности тока транзистор усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать достаточный теплоотвод. Если бюджет проекта позволяет увеличить затраты на один-два рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных ограничителей тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно пять компонентов схемы CDLL5305 позволят стабилизировать ток на уровне десять миллиампер, как и в случае применения одного компонента схемы СDLL257, но минимальное напряжение работы в случае пяти CDLL5305 меньше, что важно для схем с низким напряжением питания. Также к положительным свойствам CDLL5305 относится его доступность, по сравнению с приборами производителя Semitec. Замена одного ограничителя тока группой параллельно соединенных ограничителей тока позволяет снизить нагрев диодных ограничителей тока и отодвинуть верхнюю границу температурного диапазона. Платой за работу источника тока независимо от сопротивления нагрузки является мощность, выделяемая на транзисторе. В каждом случае требуется выбрать компромисс между запасом по сопротивлению нагрузки и выделяемым теплом на мощном регулирующем элементе. Для обеспечения широкого диапазона сопротивлений нагрузки нужно использовать источник питания с возможно большим напряжением. При выходном токе сто миллиампер на нагрузке в двадцать Ом напряжение составит два вольта, а падение напряжения на элементах источника тока составит 28 вольт при питании прибора напряжением тридцать вольт. Мощность 28В*100мА=2,8 ватт выделится на элементах схемы источника тока. При выборе радиатора следует не забывать о простом правиле: “Кашу маслом не испортишь”. Уменьшение максимально возможного сопротивления нагрузки позволит уменьшить напряжение питания, что снизит нагрев устройства, снизит размеры радиатора и увеличит КПД.

УВЕЛИЧЕНИЕ РАБОЧЕГО НАПРЯЖЕНИЯ

Для использования диодных ограничителей тока при напряжениях более напряжения пробоя последовательно с диодным ограничителем тока включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

чем ограничить силу тока. Смотреть фото чем ограничить силу тока. Смотреть картинку чем ограничить силу тока. Картинка про чем ограничить силу тока. Фото чем ограничить силу тока

Разыскать отечественные диодные ограничители тока не удалось. Вероятно с течением времени ситуация с отечественными полупроводниковыми приборами этого класса изменится.

П. Хоровиц, У. Хилл. Искусство схемотехники.
Л. А. Бессонов. Теоретические основы электротехники. Электрические цепи.
Радио №2, 1974 г.
http://pdf1.alldatasheet.com/datasheet-pdf/view/124777/MICROSEMI/CDLL5305.html
http://www.datasheetarchive.com/CA500-datasheet.html
http://www.centralsemi.com/PDFs/products/cclm0035-5750.pdf
http://www.centralsemi.com/PDFs/other/ec051semiconductora.pdf
http://www.centralsemi.com/PDFs/products/cld_application_notes.pdf
http://www.centralsemi.com/PDFs/products/ALL_SMD_CLD_curves.pdf
http://www.centralsemi.com/product/smd/select/diodes/CLD.aspx
http://www.semitec-usa.com/downloads/crd.pdf

Комментарии могут оставлять только зарегистрированные пользователи

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *