чем объясняется высокая теплопроводность металлов
Теплопередача. Теплопроводность металлов
Урок 3. Физика 8 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Теплопередача. Теплопроводность металлов»
Всем известно, что теплота может «путешествовать» с одного места на другое. Однако нам пока что неизвестно, каким же образом это происходит? Одинаково ли протекают теплообменные процессы в твёрдых телах, жидкостях и газах? И какова природа передачи теплоты? Чтобы ответить на эти вопросы, проведём эксперимент.
Возьмём железный гвоздь и стеклянную палочку и будем нагревать их концы в пламени спиртовки.
Через некоторое время мы почувствуем тепло. К пальцам, которые держат железный гвоздь, оно дойдёт гораздо быстрее, и вскоре мы не сможем удержать гвоздь, поскольку его температура значительно повысится. Стеклянную же палочку мы ещё долго сможем держать, хотя со временем и её температура повысится до такой степени, что будет печь пальцы.
В рассмотренном нами эксперименте происходит перенос теплоты от более нагретых частей тела к менее нагретым. Вы сами можете привести множество примеров такого переноса теплоты.
Такая передача энергии происходит в результате столкновения частиц. Она передаётся как бы по цепочке, последовательно слой за слоем, и со временем температура всех частей тела выравнивается.
Проведём ещё один опыт. К металлическому стержню, закрепленному в штативе, с помощью воска или пластилина прикрепим несколько кнопок. Свободный конец стержня будем нагревать на пламени спиртовки.
Через некоторое время мы увидим, что кнопки начнут отпадать от стержня: сначала отпадёт та кнопка, которая находится ближе к пламени, а затем поочерёдно все остальные.
Поскольку кнопки отпадали не одновременно, то можно сделать вывод о том, что температура стержня повышалась постепенно.
Почему это происходит? Попробуем разобраться, используя знания, полученные нами на предыдущих уроках.
Мы знаем, что в твёрдом теле (например, в металле) частицы взаимодействуют между собой, потенциальная энергия их велика, и они могут совершать колебательные движения около определенных положений. Модель структуры твердого тела (металла) можно представить в виде кристаллической решётки.
Модель кристаллической решётки
Частицы металла ближнего к пламени конца стержня получают от него энергию. А это значит, что увеличивается средняя кинетическая энергия колебательного движения его частиц. Так как частицы взаимодействуют друг с другом, то они передают часть своей энергии соседним частицам, заставляя их колебаться быстрее. Те, в свою очередь, передают энергию своим соседям, и так далее по всему стержню.
Это можно уподобить передаче энергии колебательного движения от одного человека к другому в цепочке стоящих рядом, взявшихся за руки людей. Если один человек будет смещаться, то в одну, то в другую сторону, то он вызовет смещение по очереди и всех остальных.
Обращаем внимание на то, что перемещение вещества от одного тела к другому или от одной части тела к другой, не происходит, но при этом передаётся энергия.
Процесс переноса теплоты от более нагретых тел или частей тела к менее нагретым в результате теплового движения и взаимодействия частиц без переноса вещества называется теплопроводностью.
Так как взаимодействие молекул и тепловое движение у разных веществ неодинаковы, то и теплопроводность веществ разная.
Чтобы в этом убедиться, проделаем следующий опыт. Возьмём сосуд с горячей водой и стержни одинакового размера из различных материалов, например, из серебра, латуни, стали, стекла и дерева. Верхние концы стержней погрузим в сосуд так, чтобы они прогревались водой. А к свободным нижним концам этих стержней прикрепим воском или пластилином кнопки.
Через некоторое время мы заметим, что первым отпадает кнопка от серебряного стержня. Значит серебро — это очень хороший проводник тепла. Затем отпадает гвоздик от стержня из латуни, а потом и от стального.
Ждать же, пока прогреются стеклянный и деревянный стержни, приходится очень долго. Значит, дерево и стекло имеют очень малую теплопроводность.
Так теплопроводность дерева примерно в три тысячи раз меньше теплопроводности серебра. Убедиться в этом можно на опыте. Деревянную или стеклянную палочку можно безопасно держать рукой, в то время как другой ее конец, находящийся в пламени спиртовки, уже горит или плавится.
Становится понятным, почему деревянные дома лучше сохраняют тепло, чем кирпичные, почему ручки паяльников, кастрюль и сковородок делают из пластмассы или дерева.
Материалы, которые очень плохо проводят тепло, называют теплоизоляторами.
Теперь зададимся вопросом, а могут ли проводить теплоту газы? Что бы на него ответить, проделаем такой опыт: поместим в открытый конец пробирки термометр и будем нагревать пробирку в пламени спиртовки донышком вверх. Можно заметить, что нагревание воздуха идёт, но очень медленно, что подтверждается незначительным повышением показания термометра.
Приведём ещё несколько примеров. И так, все вы знаете, что фен выдувает горячий воздух за счёт электрической энергии, которую он потребляет из сети.
Однако, если встать чуть-чуть в стороне от потока воздуха, то тепло едва ли можно будет ощутить.
Кроме того, мы знаем, что двойные окна значительно лучше сохраняют тепло, чем одинарные. Это происходит за счёт небольшого слоя воздуха между ними.
Двойные стёкла в оконной раме
Так чем объясняется столь плохая теплопроводность газов? Вспомните, что силы взаимодействия между молекулами газов при нормальном давлении практически равны нулю. Значит, энергия переносится только за счёт хаотического движения молекул и столкновений их друг с другом. Поэтому, например, сильно разреженные газы практически не проводят теплоту. Это их свойство применяют, в частности, в термосах, чтобы продолжительное время сохранять в них жидкости при постоянной температуре.
Такими образом, теплопроводность газов очень малая, особенно по сравнению с теплопроводностью твёрдых тел. Так, например, теплопроводность обычного воздуха, которым мы с вами дышим, почти в 10 000 раз меньше, чем теплопроводность меди.
А теперь давайте выясним, какова же теплопроводность жидкостей? Так как взаимодействие молекул у жидкостей значительное, то перенос энергии молекулами у них лучше, чем у газов, но хуже, чем у твёрдых тел. Чтобы в этом убедиться, проведём такой опыт. Возьмём пробирку с водой, на дно которой поместим кусочек льда. Чтобы лёд не всплывал, прикрепим к нему какой-либо металлический предмет. Будем нагревать верхнюю часть пробирки в спиртовке.
Через некоторое время вода в верхней части пробирки закипит, но лёд на дне при этом не растает. Это говорит о том, что теплопроводность воды малая, хотя и больше чем у воздуха. Следует помнить, что металлы, находящиеся в жидком состоянии (это, например, медь, олово и так далее) обладают хорошей теплопроводностью.
Таким образом, теплопроводность жидкости действительно занимает промежуточное положение между теплопроводностью газов и твёрдых тел.
И так, из всех рассмотренных нами примеров мы можем сделать вывод о том, что теплопроводность — это свойство тел, и у каждого тела она разная. Например, шерсть, перья и волосы имеют плохую теплопроводность. Это объясняется тем, что между их волокнами содержатся частички воздуха.
Мы постоянно сталкиваемся с явлением теплопроводности в повседневной жизни. Например, посуду, в которой готовят пищу, делают из материалов, обладающих хорошей теплопроводностью, чтобы передавать энергию от источника к пище. А вот посуду из которой едят, наоборот, делают из материалов с плохой теплопроводностью.
Самой низкой теплопроводностью обладает вакуум (то есть пространство, свободное от вещества). И это неудивительно, ведь явление теплопроводности возникает при взаимодействии молекул или других частиц, которых в вакууме попросту нет в вакууме. Этим и объясняется тот факт, что в открытом космосе самая низкая температура в природе.
Конечно же у вас может возникнуть вопрос: как же тогда нам передаётся тепло от Солнца? Это происходит посредством ещё одного вида теплопередачи — излучения. Но нём мы поговорим с вами в следующий раз.
Теплопроводность металлов и сплавов
Металлы обладают большим количеством характеристик, которые определяют их эксплуатационные качества и возможность применения при изготовлении определенных изделий. Важной характеристикой всех материалов можно назвать теплопроводность. Этот показатель определяет способность материального тела к переносу тепловой энергии. Таблица теплопроводности металлов встречается в различных справочниках, может зависеть от различных их особенностей. Примером можно назвать то, что механизм переноса тепловой энергии во многом зависит от агрегатного состояния вещества.
От чего зависит показатель теплопроводности
Рассматривая теплопроводность металлов и сплавов (таблица создана не только для металлов, но и других материалов), следует учитывать, что наиболее важным показателем является коэффициент теплопроводности. Он зависит от нижеприведенных моментов:
В таблицах для некоторых металлов и сплавов коэффициент теплопроводности указывается уже в жидкой фазе.
Сегодня на практике практически не проводят измерение рассматриваемого показателя. Это связано с тем, что коэффициент теплопроводности при несущественном изменении химического состава остается практически неизменным. Табличные данные применяются при проектировании и выполнении других расчетов.
Понятие коэффициента теплопроводности
Описание свойства теплопроводности многих металлов проводится по формуле k = 2,5·10−8σT. В этой формуле учитывается:
Это соотношение больше всего подходит для определения свойств проводников на момент эксплуатации при нагреве, но в последнее время применяется и для измерения степени проводимости тепловой энергии.
Полупроводники и изоляторы обладают более низкими показателями проводимости тепла, что связано с особенностями строения их кристаллической решетки.
Когда учитывается
При рассмотрении различных свойств материалов часто уделяется внимание и теплопроводности. Этот показатель важен в нижеприведенных случаях:
В заключение отметим, что до развития молекулярно-кинетической теории было принято считать передачу тепловой энергии признаком перетекания гипотетического теплорода. Появление современного оборудования позволило изучить строение материалов и изучить поведение частиц при воздействии высокой температуры. Передача энергии происходит за счет быстрого движения молекул, которые начинают сталкиваться, и приводит в движение другие молекулы, находящиеся в спокойном состоянии.
Теплопроводность металлов
Среди большого количества параметров, характеризующие металлы существует и такое понятие как теплопроводность. Ее значение сложно переоценить. Этот параметр применяют при расчете деталей и узлов. Например, шестеренчатых передач. Вообще теплопроводностью занимается целый раздел науки под названием термодинамика.
Что такое теплопроводность и термическое сопротивление
Теплопроводность металлов можно охарактеризовать так – это способность материалов (газ, жидкость и пр.) переносить излишнюю тепловую энергию от разогретых участков тела к холодным. Перенос осуществляется свободно движущимися элементарными частицами, в число которых входят атомы электроны и пр.
Сам процесс теплообмена происходит в любых телах, но способ переноса энергии во многом зависит от агрегатного состояния тела.
Кроме этого теплопроводности можно дать еще одно определение – это количественный параметр возможности тела проводить тепловую энергию. Если сравнивать тепловые и электрические сети, то это понятие аналогично электрической проводимости.
Способность физического тела не допускать распространение теплового колебания молекул называют тепловым сопротивлением. Кстати, некоторые, искренне заблуждаются, путая это понятие с теплопроводностью.
Понятие коэффициента теплопроводности
Коэффициентом теплопроводности называют величину, которая равна количеству теплоты, переносимого через единицу поверхности за одну секунду.
Теплопроводность металла была установлена еще в 1863 году. Именно тогда было доказано то, что за передачу теплоты отвечают свободные электроны, которых в металле великое множество. Именно поэтому коэффициент теплопроводности металлов значительно выше, чем у диэлектрических материалов.
От чего зависит показатель теплопроводности
Теплопроводность – это физическая величина и по большей части зависит от параметров температуры, давления и типа вещества. Большая часть коэффициентов определяется опытным путем. Для этого разработано множество методов. Результаты сводятся в справочные таблицы, которые потом используются при проведении различных научных и инженерных расчетов.
Тела обладают разной температурой и при тепловом обмене она (температура) будет распределяться неравномерно. Другими словами необходимо знать, как зависит коэффициент теплопроводности от температуры.
Многочисленные опыты показывают то, что у многих материалов связь между коэффициентом и самой теплопроводностью является линейной.
Теплопроводность металлов обусловлена формой его кристаллической решетки.
Во многом коэффициент теплопроводности зависит от строения материала, размеров его пор и влажности.
Когда учитывается коэффициент теплопроводности
Параметры теплопроводности в обязательном порядке учитывают во время выбора материалов для ограждающих конструкций – стен, перекрытий и пр. В помещениях, где стены выполнены из материалов с высокой теплопроводностью в холодное время года будет довольно прохладно. Не поможет и отделка помещения. Для того, чтобы этого избежать стены необходимо делать довольно толстыми. Это непременно повлечет повышение затрат на материалы и оплату труда.
Схема утепления деревянного дома
Именно поэтому в конструкции стен предусмотрено использование материалов с низкой теплопроводностью (минеральная вата, пенопласт и пр.).
Показатели для стали
В этих справочных материалах размещена информация и свойствах чугунов.
Коэффициенты теплопроводности алюминиевых, медных и никелевых сплавов
Во время проведения расчетов связанных с цветными металлами и сплавами проектировщики применяют справочные материалы, размещенные в специальных таблицах.
Таблица теплопроводности алюминиевых сплавов
В них представлены материалы о теплопроводности цветных металлов и сплавов, кроме этих данных указана информация о химическом составе сплавов. Исследования проводили при температурах от 0 до 600 °С.
По информации собранной в этих табличных материалах видно то, что к цветным металлам, обладающим высокой теплопроводностью сплавы на основе магния и никель. К металлам, у которых низкая теплопроводность относят нихром, инвар и некоторые другие.
У большинства металлов хорошая теплопроводность, у одних она больше, у других меньше. К металлам с хорошей теплопроводностью относят золото, медь и некоторые другие. К материалам с низкой теплопроводностью относят олово, алюминий и пр.
Таблица теплопроводности сплавов никеля
Высокая теплопроводность может быть и достоинством, и недостатком. Все зависит от сферы применения. К, примеру, высокая теплопроводность хороша для кухонной посуды. Материалы с низкой теплопроводностью применяют для создания неразъемных соединений металлических деталей. Существуют целые семейства сплавов, выполненных на основе олова.
Недостатки высокой теплопроводности меди и ее сплавов
Медь имеет гораздо большую стоимость, чем алюминий или латунь. Но между тем этот материал имеет ряд недостатков, которые связаны с его положительными сторонами.
Высокая теплопроводность этого металла вынуждает к созданию специальных условий для его обработки. То есть медные заготовки необходимо нагревать более точно, нежели сталь. Кроме этого часто, перед началом обработки предварительный или сопутствующий нагрев.
Нельзя забывать о том, что трубы, изготовленные из меди, подразумевают то, что будет проведена тщательная теплоизоляция. Особенно это актуально для тех случаев, когда из этих труб собрана система подачи отопления. Это значительно удорожает стоимость выполнения монтажных работ.
Определенные сложности возникают и при использовании газовой сварки. Для выполнения работе требуется более мощный инструмент. Иногда, для обработки меди толщиной в 8 – 10 мм может потребоваться использование двух, а то и трех горелок. При этом одной из них выполняют сварку медной трубы, а остальные заняты ее подогревом. Ко всему прочему работа с медью требует большего количества расходных материалов.
Работа с медью требует использования и специализированного инструмента. Например, при резке деталей, выполненных из бронзы или латуни толщиной в 150 мм потребуется резак, который может работать с сталью с большим количеством хром. Если его использовать для обработки меди, то предельная толщина не будет превышать 50 мм.
Можно ли повысить теплопроводность меди
Не так давно, группа западных ученых провела ряд исследований по повышению теплопроводности меди и ее сплавов. Для работы они применяли пленки, выполненные из меди, с нанесенным на ее поверхность тонким слоем графена. Для его нанесения использовали технологию его осаждения из газа. При проведении исследований применялось множество приборов, которые были призваны подтвердить объективность полученных результатов.
Результаты исследований показали то, что графен обладает одним из самых высоких показателей теплопроводности. После того, как его нанесли на медную подложку, теплопроводность несколько упала. Но, при проведении этого процесса происходит нагревание меди и в ней происходит увеличение зерен, и в результате повышается проходимость электронов.
Графен с медной фольгой
При нагревании меди, но без нанесения этого материала, зерна сохранили свой размер.
Одно из назначений меди это отведение лишнего тепла из электронных и электрических схем. Использование графенового напыления эта задача будет решаться значительно эффективнее.
Влияние концентрации углерода
Стали с малым содержанием углерода обладают высокими показателями теплопроводности. Именно поэтому материалы этого класса применяют для изготовления труб и арматуры для нее. Теплопроводность сталей этого типа лежит в диапазоне 47-54 Вт/(м× К).
Значение в быту и производстве
Применение теплопроводности при строительстве
У каждого материала имеется свой показатель теплопроводности. Чем ее значение ниже, тем, соответственно ниже уровень теплообмена между внешней и внутренней средой. Это означает то, что в здании, сооруженном из материала с низкой теплопроводностью, зимой будет тепло, а летом прохладно.
Тепловые потери по швам панельного дома
При сооружении различных зданий, в том числе и жилые здания, без знаний о теплопроводности стройматериалов не обойтись. При проектировании строительных сооружений необходимо учитывать данные о свойствах таких материалов как – бетон, стекло, минеральная вата и многих других. Среди них предельная теплопроводность принадлежит бетону, между тем, у древесины она в 6 раз меньше.
Системы отопления
Ключевая задача любой отопительной системы – это перенос тепловой энергии от теплоносителя в помещения. Для такого обогрева применяют батареи или радиаторы отопления. Они необходимы для передачи тепловой энергии в помещения.
Именно теплоотдача и есть ключевой параметр. Все дело в том, что определяет объем энергии, которое передается от радиатора в помещение. Чем больше этот показатель, тем ниже будут потери тепла.
Существуют справочные таблицы, определяющие материалы, оптимальные для использования в отопительных системах. Из данных, которые в них размещены, становится ясно, что самым эффективным материалом считается медь. Но, вследствие ее высокой цены и определенных технологических сложностей, связанных с обработкой меди их применяемость не так высока.
Именно поэтому все чаще применяют модели, изготовленные из стальных или алюминиевых сплавов. Нередко применяют и сочетание различных материалов, например, стали и алюминия.
Каждый изготовитель радиаторов, при маркировке готовых изделий должен указывать такую характеристику, как мощность тепловой отдачи.
На рынке отопительных систем можно приобрести радиаторы, изготовленные из чугуна, стали, алюминия и биметалла.
Методы изучения параметров теплопроводности
При проведении изучения параметров теплопроводности надо помнить о том, что характеристики конкретного металла или его сплавов от метода его выработки. Например, параметры металла полученного с помощью литья могут существенно отличаться от характеристик материала изготовленного по методам порошковой металлургии. Свойства сырого металла коренным образом отличаются от того, который прошел через термическую обработку.
Термическая нестабильность, то есть преобразование отдельных свойств металла после воздействия высоких температур является общим для практически всех материалов. Как пример можно привести то, что металлы после длительного воздействия разных температур способны достичь разных уровней рекристаллизации, а это отражается на параметрах теплопроводности.
Структура стали после термической обработки
Можно сказать следующее – при проведении исследований параметров теплопроводности необходимо использовать образцы металлов и их сплавов в стандартном и определенном технологическом состоянии, например, после термической обработки.
Например, существуют требования по измельчению металла для проведения его исследований с применением способов термического анализа. Действительно, такое требование существует при проведении ряда исследований. Бывает и такое требование – как изготовление специальных пластин и многие другие.
Нетермостабильность металлов ставит ряд ограничений использование теплофизических способов исследования. Дело в том, что этот способ проведения исследований требует нагревать образцы не менее двух раз, в определенном температурном интервале.
Один из методов называют релакционно-динамическим. Он предназначен для выполнения массовых измерений теплоемкости у металлов. В этом методе фиксируется переходная кривая температуры образца между его двумя стационарными состояниями. Этот процесс является следствием скачка тепловой мощности вводимой в испытуемый образец.
Такой метод можно назвать относительным. В нем используются испытуемый и сравнительный образцы. Главное заключается в том, что бы у образцов была одинаковая излучающая поверхность. При проведении исследований температура, воздействующая на образцы должна изменяться ступенчато, при этом по достижении заданных параметров необходимо выдержать определенное количество времени. Направление изменения температуры и ее шаг должен быть подобран таким образом, что бы образец, предназначенный для испытаний, прогревался равномерно.
В эти моменты тепловые потоки сравняются и отношение теплопередачи будет определяться как разность скоростей колебаний температуры.
Иногда в процессе этих исследований источник косвенного подогрева исследуемого и сравнительного образца.
На один из образцов могут быть созданы дополнительные тепловые нагрузки в сравнении со вторым образцом.
Какой метод измерения теплопроводности лучше всего подходит для вашего материала?
Существуют методы измерения тепловодности, такие как LFA, GHP, HFM и TCT. Они отличаются друг от друга размерами и геометрическими параметрами образцов, применяемых для проверки теплопроводности металлов.
Эти сокращения можно расшифровать как:
Вышеуказанные способы применяют для определения коэффициентов различных металлов и их сплавов. Вместе с тем с использованием этих методов, занимаются исследованием других материалов, например, минералокерамики или огнеупорных материалов.
Образцы металлов, на которых проводят исследования, имеют габаритные размеры 12,7×12,7×2.