чем объясняется высокая теплоемкость воды
Чем объясняется высокая теплоемкость воды
Большая теплоемкость воды. Удельной теплоемкостью воды называют количество теплоты, которое необходимо, чтобы поднять температуру 1 кг воды на ГС. Вода обладает большой теплоемкостью. Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение ее температуры. Объясняется такое явление тем, что значительная часть энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды, т. е. на преодоление упомянутой выше «склеенности» ее молекул.
Большая теплоемкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью, и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, обеспечивающей им довольно значительное постоянство условий.
Большая теплота испарения воды. Скрытая теплота испарения есть мера количества тепловой энергии, которую необходимо сообщить жидкости для ее перехода в пар, т. е. для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии. Это объясняется существованием водородных связей между ее молекулами. Именно в силу этого температура кипения воды — вещества со столь малыми молекулами — необычно высока.
Энергия, необходимая молекулам воды для испарения, черпается из окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, а также при тепловой одышке у млекопитающих или у некоторых рептилий (например крокодилов), которые на солнцепеке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев. Большая теплота испарения означает, что отдача организмом даже больших количеств тепла сопровождается минимальными потерями воды, т. е. не обязательно ведет к его обезвоживанию.
Некоторые важные биологические функции воды
Большая теплота плавления воды. Скрытая теплота плавления — это мера тепловой энергии, необходимой для расплавления твердого вещества (в нашем случае — льда). Для плавления (таяния) льда необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.
Плотность и и поведение воды вблизи точки замерзания. Плотность воды от +4 до О °С понижается, поэтому лед легче воды и в воде не тонет. Вода — единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твердом.
Поскольку лед плавает в воде, он образуется сначала на ее поверхности и лишь затем в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоемах вообще не могла бы существовать. Лед покрывает толщу воды, как одеялом, что повышает шансы на выживание у организмов, обитающих в воде. Это важно в условиях холодного климата и в холодное время года, но, несомненно, особенно важную роль это играло в ледниковый период. Кроме того, находясь на поверхности, лед быстрее и тает. То обстоятельство, что слои воды, температура которых упала ниже 4°С, поднимаются вверх, обусловливает перемешивание воды в больших водоемах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоемы заселяются живыми организмами на большую глубину.
Большое поверхностное натяжение и когезия воды. Когезия — это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение — результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной (в идеале — форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды. Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях (гл. 13). Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по ее поверхности.
Вода как реагент. Биологическое значение воды определяется тем, что она представляет собой один из необходимых метаболитов, т. е. участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода при фотосинтезе, а также участвует в реакциях гидролиза.
Некоторые важные с биологической точки зрения функции воды перечислены в таблице.
Удельная теплоёмкость воды, или почему мы такие, какие есть
Теплоёмкость воды (ТВ) — одно из важнейших для нашей планеты свойств воды.
Удельная теплоёмкость воды
Дадим этому термину краткое определение.
Теплоемкость вещества — это его способность аккумулировать в себе тепло. Измеряется эта величина количеством поглощаемого им тепла, при нагреве на 1°С. Например, теплоемкость воды — 1 кал/г, или 4,2 Дж/г, а почвы — при 14,5-15,5°С (в зависимости от типа почвы) колеблется от 0,5 до 0,6 кал (2,1-2,5 Дж) на единицу объема и от 0,2 до 0,5 кал (или 0,8-2,1 Дж) на единицу массы (граммы).
Теплоемкость воды оказывает существенное влияние на многие аспекты нашей жизни, но в этом материале мы сделаем акцент на ее роль в формировании температурного режима нашей планеты, а именно …
Теплоёмкость воды и климат Земли
По своему абсолютному значению теплоемкость воды достаточно велика. Из приведенного выше определения мы видим, что она существенно превышает теплоемкость почвы нашей планеты. Из-за такой разности теплоемкостей почва, по сравнению с водами мирового океана, значительно быстрее нагревается и соответственно быстрее остывает. Благодаря более инертному мировому океану колебания суточных и сезонных температур Земли не так велики, как были бы в случае отсутствия океанов и морей. Т. е. в холодное время года вода греет Землю, а в теплое охлаждает. Естественно это влияние наиболее ощутимо в прибрежных районах, но в глобальном усредненном измерении влияет на всю планету.
Естественно, что на колебания суточных и сезонных температур влияет множество факторов, но вода является одним из важнейших.
Увеличение амплитуды колебаний суточных и сезонных температур радикально изменило бы окружающий нас мир.
Например, хорошо всем известный факт — камень при резких температурных колебаниях теряет свою прочность и становится хрупким. Очевидно, что «несколько» другими были бы и физические параметры тела человека.
Аномальные свойства теплоемкости воды
Теплоемкость воды обладает аномальными свойствами. Оказывается, при повышении температуры воды ее теплоемкость уменьшается, эта динамика сохраняется до 37°C, при дальнейшем увеличении температуры теплоемкость начинает возрастать.
Заключение
В этом факте заключено одно интересное утверждение. Условно говоря, сама природа в лице Воды определила 37°C как наиболее комфортную температуру для организма человека, при условии, конечно соблюдения всех остальных факторов. При любой динамике изменения температуры окружающей среды температура воды тяготеет к 37°C.
Вот такая краткая история Теплоемкости воды 🙂
Отопление
Страницы
вторник, 22 марта 2011 г.
Вода и ее особенности
Чтобы испарить воду, уже нагретую до 100 oС, требуется вшестеро больше количества теплоты, чем для нагрева этой же массы воды на 80 oС (от 20 до 100 oС).
Каждую минуту миллион тонн воды гидросферы испаряется от солнечного нагрева. В результате в атмосферу постоянно поступает колоссальное количество теплоты, эквивалентное тому, которое бы вырабатывали 40 тысяч электростанций мощностью 1 млрд. киловатт каждая.
Вода лишь кажется бесформенной, растекаясь по любой поверхности. Сила поверхностного натяжения заставляет молекулы ее наружного слоя сцепляться, создавая упругую внешнюю пленку. Свойства пленки также определяются замкнутыми и разомкнутыми водородными связями, ассоциатами различной структуры и разной степени упорядоченности. Благодаря пленке некоторые предметы, будучи тяжелее воды, не погружаются в воду (например, осторожно положенная плашмя стальная иголка).
Струя химически чистой воды сечением 1 см2 по прочности на разрыв не уступает стали того же сечения. Водную струю как бы цементирует сила поверхностного натяжения. Поведение воды в капиллярах подчиняется и более сложным физическим закономерностям. Сент-Дьердьи отмечал, что в узких капиллярах возникают структурно упорядоченные слои воды вблизи твердой поверхности. Структурирование распространяется в глубь жидкой фазы на толщину слоя порядка десятков и сотен молекул (ранее предполагали, что упорядоченность ограничивается лишь мономолекулярным слоем воды, примыкающим к поверхности).
Вода, универсальный растворитель
Строение воды
Вода — уникальное вещество и все её аномальные свойства: высокая температура кипения, значительная растворяющая и диссоциирующая способность, малая теплопроводность, высокая теплота испарения и другие обусловлены строением её молекулы и пространственной структурой.
У отдельно взятой молекулы воды есть качество, которое проявляется только в присутствии других молекул: способность образовывать водородные мостики между атомами кислорода двух оказавшихся рядом молекул, так, что атом водорода располагается на отрезке, соединяющем атомы кислорода. Свойство образовывать такие мостики обусловлено наличием особого межмолекулярного взаимодействия, в котором существенную роль играет атом водорода. Это взаимодействие называется водородной связью.
Каждая из присоединённых к данной молекул воды сама способна к присоединению дальнейших молекул. Этот процесс можно называть «полимеризацией». Если только одна из двух возможных связей участвует в присоединении следующей молекулы, а другая остаётся вакантной, то «полимеризация» приведёт к образованию либо зигзагообразной цепи, либо замкнутого кольца. Наименьшее кольцо, по-видимому, может состоять из четырёх молекул, но величина угла 90° делает водородные связи крайне напряжёнными. Практически ненапряжёнными должны быть пятизвенные кольца (угол 108 о ) шестизвенные (угол 120° ), также как и семизвенные – напряжённые.
Рассмотрение реальных структур гидратов показывает, что, действительно, наиболее устойчиво шестизвенное кольцо, находимое в структурах льдов. Плоские кольца являются привилегией клатратных гидратов, причём во всех известных структурах чаще всего встречаются плоские пятизвенные кольца из молекул воды. Они, как правило, чередуются во всех структурах клатратных гидратов с шестизвенными кольцами, очень редко с четырёхзвенными, а в одном случае — с плоским семизвенным.
В целом структура воды представляется как смесь всевозможных гидратных структур, которые могут в ней образоваться.
Уникальные свойства воды интересуют людей с древнейших времен. Это единственное вещество на Земле, которое при нормальных для человека условиях может находится сразу в трех агрегатных состояниях — жидком, твердом и газообразном.
Лед, плотность, кристаллизация. При замерзании плотность воды уменьшается, поэтому лед всплывает. Благодаря этому уникальному свойству воды озера и реки не промерзают до дна, и водные обитателимогут пережить зиму.
Уменьшение плотности льда происходит вследствие увеличения объема. Именно поэтому замерзающая вода рвет водопроводные трубы.Вода может быть переохлаждена до отрицательных температур без перехода в твердое состояние. Однако при малейшем сотрясении или попадании каких-либо частиц переохлажденная вода быстро превращается в лед. Посторонние частицы, пузырьки воздуха в этом случае становятся центрами кристаллизации.
Высокая скрытая теплота испарения воды спасает водоемы от быстрого высыхания жарким летом. А высокая скрытая теплота плавления защищает нас весной от слишком быстрого таяния огромного количества снега, скопившегося за зиму.
Растворитель. Вода является универсальным растворителем. Это качество объясняется особым строением молекулы воды. Молекулы сильно поляризованы, благодаря чему легко входят во взаимодействие с молекулами других веществ. Именно свойство сильного растворителя затрудняет получение абсолютно химически чистой воды.
Высокое поверхностное натяжение воды наблюдал каждый из нас. Вспомните, как по поверхности пруда бегают водомерки. Даже не очень тяжелый предмет из несмачиваемого материала может оставаться на поверхности воды. В отсутствии гравитации капля воды стремится принять идеальную форму шара. Кстати, еще одно полезное свойство воды — способность поглощать микроволновое излучение — позволяет нам разогревать продукты в микроволновой печи.
Видео
Какие вещества растворяются в воде
Даже если школьник ходит только в 3 класс, он наверняка может привести примеры материалов, которые боятся контакта с водой, или, другими словами, растворяются в ней и теряют свои свойства.
Вот перечень только некоторых веществ такого типа:
К хорошо растворимым относятся: соль, сахар, сода, хлориды, щелочные металлы и нитраты, а также бромиды. Воздух также претерпевает изменения при контакте с жидкой средой. Крахмал полностью растворим, спирт тоже.
Есть и такие материалы, которые являются нерастворимыми: сульфид меди, стекло, золото, керосин, серебро, растительный жир и многие другие. Правда, при некоторых условиях даже они не способны устоять от такого мощного воздействия.
В организме человека есть целая группа витаминов (С, В1, 2, 3(РР), В12 и другие), которые способны оказывать свое положительное воздействие на здоровье только в контакте с H2O. Это касается также и фолиевой кислоты, биотина и т. д.
Характеристики универсального растворителя
полярность
Это большая часть того, почему вода является универсальным растворителем. Полярность – это неравномерность распределения электронов в молекула, что приводит к одной молекуле, имеющей две противоположные стороны; один отрицательный и один положительный. Теперь вода имеет молекулярную формулу H2O, поэтому каждая молекула воды имеет два атома водорода и один атом кислорода, как вы можете видеть на диаграмме ниже. Атомы водорода не находятся на противоположных сторонах друг друга, и они несут частичный положительный заряд. Это означает, что они создают положительно заряженную часть молекулы, в то время как кислородный конец создает отрицательно заряженную часть. Эта полярность означает, что вода может присоединяться и, следовательно, растворять полярные и ионные (заряженные) вещества.
Высокая удельная теплоемкость
Количество энергии, необходимое для повышения температуры одного грамма воды на 1 градус Цельсия, является ее удельной теплотой, и при одной калории на грамм она намного выше, чем удельная теплоемкость большинства жидкостей. Это хорошая новость для нас, так как мы на 60% состоим из воды, и мы не смогли бы выжить, если бы наши тела сильно и быстро остыли и нагрелись. Это также имеет решающее значение для выживания всех других организмов, в том числе водных организмов. Это означает, что океаны и реки не замерзают постоянно или не испаряются при изменении температуры. Если вода не может стабилизировать свою температуру, энергия, которая выделяется во время обмена веществ в живых организмах, может привести к перегреву и смерти.
Уникальные свойства плотности и температуры
Когда мы помещаем кубик льда в воду, он плавает, и, к счастью, то же самое относится и к айсбергу. Если бы лед был более плотным, чем вода, он бы постоянно замерзал наверху, а затем опускался, пока все водоемы не превратятся в лед, уничтожая всю жизнь. Вода также существует в виде газа, жидкости и твердого вещества в очень небольшом диапазоне температур, что означает, что мы можем найти ее во всех трех формах на Земле в зависимости от того, где мы находимся, и часто в одном и том же месте. Это не часто встречающаяся собственность.
Что не растворяется в воде
Существуют такие химические образования, которые не воспринимают воздействия воды в качестве растворителя совсем.
Хороший пример: углерод С, который находится в простом карандаше, многие металлы и сплавы, типа алюминия, а также золото, серебро, медь.
Такая ситуация складывается благодаря тому, что между молекулами и атомами нерастворимых веществ действуют сильные связи, которые водород разрушить не в состоянии. Полярное состояние молекулы также способствует большей прочности материала, который состоит из таких частиц.
Многие вещи, которые мы видим вокруг себя в быту, также являются нерастворимыми. Очень популярный пример – пластик.
В мировом океане плавает огромное пятно из пластикового мусора, которое ежегодно растет, и количество пластмассы там совершенно не желает уменьшаться естественным путем. Его не могут никак переработать, что очень плохо для всей экосистемы.
Именно поэтому экологи бьют тревогу и в ЕС уже сейчас планируется отказ от целлофановых пакетов, пластиковых стаканчиков и трубочек и тому подобные меры.
Почему вода считается универсальным растворителем?
Наше тело работает через химические изменения, которые происходят на клеточном уровне. Точно так же растения и животные страдают химическими изменениями в своих организмах..
Эти изменения происходят в водных растворах или растворах, в которых вода является основным растворителем..
Поскольку вода обладает свойствами полярности (отрицательный и положительный заряд) и способностью образовывать водородные связи, она считается отличным растворителем.
Способность воды растворять большое разнообразие молекул является ключом для этих химических реакций, происходящих в организмах. Отсюда важность воды для жизни на планете..
Благодаря своей способности растворять большое количество растворенных веществ, больше, чем любая другая жидкость, вода известна как «универсальный растворитель». Важно отметить, что не все вещества хорошо растворяются в воде, например, масла.
Молекулы масел не имеют областей заряда ни положительных, ни отрицательных, поэтому они не притягиваются молекулами воды.
Молекулы воды состоят из атомов водорода и кислорода. Водород имеет положительный заряд, а кислород — отрицательный, что позволяет молекулам воды притягиваться ко многим различным типам молекул и, следовательно, способно растворять их.
Есть и другие свойства воды, такие как поверхностное натяжение, ее уникальная плотность и температура, которые позволяют воде быть отличным растворителем..
Вода существует в трех возможных формах, таких как газ, жидкость или твердое вещество, что обычно не встречается в других растворителях.
Чем объясняется высокая теплоемкость воды
Подробное решение параграф § 7 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014
1. Какое строение имеет вода?
Ответ. Молекула воды имеет угловое строение: входящие в её состав ядра образуют равнобедренный треугольник, в основании которого находятся два водорода, а в вершине – атом кислорода. Межъядерные расстояния О-Н близки к 0,1 нм, расстояние между ядрами атомов водорода равно 0,15 нм. Из шести электронов, составляющих внешний электронный слой атома кислорода в молекуле воды, две электронные пары образуют ковалентные связи О-Н, а остальные четыре электрона представляют собой две неподелёные электронные пары.
Молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Именно такая структура и определяет полярность молекулы воды.
2. Какое количество воды (в %) содержится в различных клетках?
Ответ. Содержание воды в живых организмах составляет 60—75 % их массы, а у некоторых, например медуз, — до 98 %. В листьях и сочных плодах растений содержание воды также может достигать 98 %.
Количество воды неодинаково в разных тканях и органах. Так, у человека в сером веществе головного мозга ее содержание составляет 85 %, а в костной ткани — 22 %. Наибольшее содержание воды в организме наблюдается в эмбриональный период (95 %) и с возрастом постепенно уменьшается.
Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93—95%, кукурузы — 75—77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80—83%, в стеблях — 87—89%, в корнях — 73—75%. Содержание воды, равное 6—11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены. Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, цитоплазме. Вакуоли — наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в цитоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%. Формы воды в разных частях растительной клетки также различны.
3. Какова роль воды в живых организмах?
2.Вода как реагент. Вода участвует во многих химических реакциях: реакциях полимеризации, гидролиза, в процессе фотосинтеза.
3.Транспортная функция. Передвижение по организму вместе с водой растворенных в ней веществ к различным его частям и выведение ненужных продуктов из организма.
Вопросы после § 7
1. В чём особенность строения молекулы воды?
Ответ. Уникальные свойства воды определяются структурой её молекулы. Молекула воды состоит из атома О, связанного с двумя атомами Н полярными ковалентными связями. Характерное расположение электронов в молекуле воды придаёт ей электрическую асимметрию. Более электроотрицательный атом кислорода притягивает электроны атомов водорода сильнее, в результате общие пары электронов смещены в молекуле воды в его сторону. Поэтому, хотя молекула воды в целом не заряжена, каждый из двух атомов водорода обладает частично положительным зарядом (обозначаемым 8+), а атом кислорода несёт частично отрицательный заряд (8-). Молекула воды поляризована и является диполем (имеет два полюса).
Частично отрицательный заряд атома кислорода одной молекулы воды притягивается частично положительными атомами водорода других молекул. Таким образом, каждая молекула воды стремится связаться водородной связью с четырьмя соседними молекулами воды.
2. Каково значение воды как растворителя?
Ответ. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания). Хорошо растворяются в воде и некоторые неионные, но полярные соединения, т. е. в молекуле которых присутствуют заряженные (полярные) группы, например сахара, простые спирты, аминокислоты. Вещества, хорошо растворимые в воде, называются гидрофильными (от греч. hygros – влажный и philia – дружба, склонность). Когда вещество переходит в раствор, его молекулы или ионы могут двигаться более свободно и, следовательно, реакционная способность вещества возрастает. Это объясняет, почему вода является основной средой, в которой протекает большинство химических реакций, а все реакции гидролиза и многочисленные окислительно-восстановительные реакции идут при непосредственном участии воды.
Вещества, плохо или вовсе нерастворимые в воде, называются гидрофобными (от греч. phobos – страх). К ним относятся жиры, нуклеиновые кислоты, некоторые белки и полисахариды. Такие вещества могут образовывать с водой поверхности раздела, на которых протекают многие химические реакции. Следовательно, тот факт, что вода не растворяет неполярные вещества, для живых организмов также очень важен. К числу важных в физиологическом отношении свойств воды относится её способность растворять газы (О2, СО2 и др.).
3. Что такое теплопроводность и теплоёмкость воды?
Ответ. Вода обладает высокой теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры. Многие организмы охлаждаются, испаряя воду (транспирация у растений, потоотделение у животных).
Вода обладает также высокой теплопроводностью, обеспечивая равномерное распределение тепла по всему организму. Следовательно, высокая удельная теплоёмкость и высокая теплопроводность делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.
4. Почему считают, что вода является идеальной жидкостью для клетки?
Вода имеет высокую теплоемкость и одновременно относительно высокую для жидкостей теплопроводность. Эти свойства делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.
5. Какова роль воды в клетке
Ответ. Содержание воды в клетке — от 40 до 98% ее массы. Роль воды в клетке:
— обеспечение упругости клетки. Последствия потери клеткой воды увядание листьев, высыхание плодов;
— ускорение химических реакций за счет растворения веществ в воде;
— обеспечение перемещения веществ: поступление большинства веществ в клетку и удаление их из клетки в виде растворов;
— обеспечение растворения многих химических веществ (ряда солей, сахаров);
— участие в ряде химических реакций;
— участие в процессе теплорегуляции благодаря способности к медленному нагреванию и медленному остыванию.
6. Какие структурные и физико-химические свойства воды определяют её биологическую роль в клетке?
Ответ. Структурные физико-химические свойства воды определяют ее биологические функции.
Вода является хорошим растворителем. Благодаря полярности молекул и способности образовывать водородные связи вода легко растворяет ионные соединения (соли, кислоты, основания).
Вода обладает высокой теплоёмкостью, т. е. способностью поглощать тепловую энергию при минимальном повышении собственной температуры. Большая теплоёмкость воды защищает ткани организма от быстрого и сильного повышения температуры. Многие организмы охлаждаются, испаряя воду (транспирация у растений, потоотделение у животных).
Вода обладает также высокой теплопроводностью, обеспечивая равномерное распределение тепла по всему организму. Следовательно, высокая удельная теплоёмкость и высокая теплопроводность делают воду идеальной жидкостью для поддержания теплового равновесия клетки и организма.
Вода практически не сжимается, создавая тургорное давление, определяя объём и упругость клеток и тканей. Так, именно гидростатический скелет поддерживает форму у круглых червей, медуз и других организмов.
Вода характеризуется оптимальным для биологических систем значением силы поверхностного натяжения, которое возникает благодаря образованию водородных связей между молекулами воды и молекулами других веществ. Благодаря силе поверхностного натяжения происходит капиллярный кровоток, восходящий и нисходящий токи растворов в растениях.
В определенных биохимических процессах вода выступает в качестве субстрата.