чем объясняется малая толщина базы в транзисторе
Тест по физике Электрический ток в полупроводниках для 11 класса
Тест по физике Электрический ток в полупроводниках. Транзистор для 11 класса с ответами. Тест включает в себя 2 варианта. В каждом варианте по 5 заданий.
1 вариант
1. Какими носителями электрического заряда создается ток в полупроводниках?
А. Только дырками
Б. Только электронами
В. Электронами и дырками
2. Каким типом проводимости обладают полупроводники с акцепторной примесью?
А. В основном электронной
Б. В основном дырочной
В. Электронной и дырочной
3. К полупроводнику p—n-типа подключен источник тока, как показано на рисунке 48. Будет ли амперметр регистрировать ток в цепи?
А. Да
Б. Нет
В. Определенного ответа дать нельзя
4. На рисунке 49 представлены три варианта включения полупроводниковых диодов в электрическую цепь с одним и тем же источником тока. В каком случае сила тока в цепи будет иметь максимальное значение?
5. Какую проводимость может иметь база транзистора?
А. Может иметь дырочную или электронную проводимость
Б. Только электронную проводимость
В. Только дырочную проводимость
2 вариант
1. Каким типом проводимости обладают чистые полупроводники?
А. Только электронной
Б. Только дырочной
В. Электронной и дырочной
2. Каким типом проводимости обладают полупроводники с донорной примесью?
А. В основном электронной
Б. В основном дырочной
В. Электронной и дырочной
3. К полупроводнику p—n-типа подключен источник тока, как показано на рисунке 50. Будет ли амперметр регистрировать ток в цепи?
А. Да
Б. Нет
В. Определенного ответа дать нельзя
4. На рисунке 51 представлены три варианта включения полупроводниковых диодов в электрическую цепь с одним и тем же источником тока. В каком случае сила тока в цепи будет иметь минимальное значение?
5. Чем объясняется малая толщина базы в транзисторе?
А. Необходимо, чтобы попадающие в базу с эмиттера основные носители зарядов успели рекомбинировать
Б. Необходимо, чтобы попадающие в базу с эмиттера основные носители зарядов не успевали рекомбинировать
В. Необходимо, чтобы база не создавала большого сопротивления
Ответы на тест по физике Электрический ток в полупроводниках. Транзистор для 11 класса
1 вариант
1-В
2-Б
3-Б
4-Б
5-А
2 вариант
1-В
2-А
3-А
4-А
5-Б
Чем объясняется малая толщина базы в транзисторе?
Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Виды транзисторов
По принципу действия и строению различают полупроводниковые триоды:
Эти транзисторы выполняют одинаковые функции, однако существуют различия в принципе их работы.
Полевые
Данный вид триодов ещё называют униполярным, из-за электрических свойств – у них протекает ток только одной полярности. По строению и типу управления эти устройства подразделяются на 3 вида:
Отличительная черта изолированного затвора – наличие диэлектрика между ним и каналом.
Детали очень чувствительны к статическому электричеству.
Схемы полевых триодов показано на рисунке 5.
Рис. 5. Полевые транзисторы
Обратите внимание на название электродов: сток, исток и затвор.
Полевые транзисторы потребляют очень мало энергии. Они могут работать больше года от небольшой батарейки или аккумулятора. Поэтому они нашли широкое применение в современных электронных устройствах, таких как пульты дистанционного управления, мобильные гаджеты и т.п.
Биполярные
Об этом виде транзисторов много сказано в подразделе «Базовый принцип работы». Отметим лишь, что название «Биполярный» устройство получило из-за способности пропускать заряды противоположных знаков через один канал. Их особенностью является низкое выходное сопротивление.
Транзисторы усиливают сигналы, работают как коммутационные устройства. В цепь коллектора можно включать достаточно мощную нагрузку. Благодаря большому току коллектора можно понизить сопротивление нагрузки.
Более детально о строении и принципе работы рассмотрим ниже.
Комбинированные
С целью достижения определённых электрических параметров от применения одного дискретного элемента разработчики транзисторов изобретают комбинированные конструкции. Среди них можно выделить:
Комбинированные транзисторы – это, по сути, элементарная микросхема в одном корпусе.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.
Также параметрами биполярного транзистора являются:
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Достоинства и недостатки биполярных транзисторов
К достоинствам биполярных транзисторов в сравнении с аналогами относятся:
К недостаткам можно отнести:
Режимы работы
Рассмотренный выше вариант представляет собой нормальный активный режим работы транзистора. Однако, есть еще несколько комбинаций открытости/закрытости p-n переходов, каждая из которых представляет отдельный режим работы транзистора.
Схемы включения
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
С общим эмиттером
Эта схема включения биполярных транзисторов обеспечивает наибольшее увеличение вольтамперных характеристик (ВАХ), поэтому является самой востребованной. Минус такого варианта – ухудшение усилительных свойств прибора при повышении частоты и температуры. Это означает, что для высокочастотных транзисторов рекомендуется подобрать другую схему.
С общей базой
Применяется для работы на высоких частотах. Уровень шумов снижен, усиление не очень велико. Каскады приборов, собранные по такой схеме, востребованы в антенных усилителях. Недостаток варианта – необходимость в двух источниках питания.
С общим коллектором
Для такого варианта характерна передача входного сигнала обратно на вход, что существенно уменьшает его уровень. Коэффициент усиления по току – высокий, по напряжению – небольшой, что является минусом этого способа. Схема приемлема для каскадов приборов в случаях, если источник входного сигнала обладает высоким входным сопротивлением.
Какие параметры учитывают при выборе биполярного транзистора?
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
На этот раз коллектор подключен к напряжению питания VCC через нагрузочный резистор, RL, который ограничивает максимальный ток, протекающий через прибор. Базовое напряжения VB, которое смещает ее в отрицательном направлении по отношению к эмиттеру, подано на нее через резистор RB, который снова используется для ограничения максимального тока базы.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
Где транзисторы купить?
Как и все другие радиокомпоненты транзисторы можно купить в любом ближайшем магазине радиодеталей. Если вы живете где-нибудь на окраине и о подобных магазинах не слышали (как я раньше) то остается последний вариант — заказать транзисторы в интернет- магазине. Я сам частенько заказываю радиодетали через интернет-магазины ведь в обычном оффлайн магазине может чего-нибудь просто не оказаться.
Впрочем если вы собираете устройство чисто для себя то можно не париться а добыть из старой, отслужившей свое техники и так сказать вдохнуть в старый радиокомпонет новую жизнь.
Чтож друзья, а на этом у меня все. Все, что планировал я сегодня вам рассказал. Если остались какие-либо вопросы, то задавайте их в комментариях, если вопросов нет то все равно пишите комментарии, мне всегда важно ваше мнение. Кстати не забывайте, что каждый кто впервые оставит комментарий получит подарок.
Эффект модуляции толщины базы. Определения, следствия.
На ЭП напряжение подается в прямом направлении, и оно мало изменяется при работе транзистора, поэтому ЭП узкий и ширина его изменяется незначительно. КП смещен в обр. направлении, поэтому его ширина больше и изменяется в широких пределах при изменении напряжения на коллекторе. А т.к. в биполярных транзисторах рб>> рк, то КП расширяется в основном в область базы, уменьшая ее толщину.
1. Iк=f(Uкб), w= f(Uкб), Iк=аIэ+ Iк0 , то есть Iк=а(Uкб)Iэ+ Iк0
2. Частотные св-ва транзистора зависят от Uкб (увел. Uкб умен.W, уменьш. время пролёта tпр)
3. КП кроме барьерной области обладает диффузионной (Ск_бар+Ск_диф)
4. Эффект модуляции толщины базы обуславливает наличие обратной связи, характеризующей влияние коллекторного перехода на эмиттерный переход из-за их близкого расположения.
Изменение распределения избыточной концентрации дырок в базе с увеличением коллекторного напряжения (пунктирная линия) при фиксированных значениях напряжения на эмиттером переходе (а) и тока эмиттера (б):
р0 — избыточная концентрация дырок в базе на границе эмиттерного перехода.
Поскольку диффузионный ток эмиттера зависит от градиента концентрации дырок в базе:
, то при постоянном напряжении на эмиттерном переходе и с увеличением по модулю напряжения на коллекторе возрастает градиент концентрации, а следовательно, и ток эмиттера.
На (б) показано влияние UKб на распределение дырок в базе, если поддерживать постоянной величину тока эмиттера. С увеличением UKб (по модулю) толщина базы уменьшается. Чтобы ток эмиттера оставался постоянным, необходимо, чтобы с изменением UKб градиент концентрации оставался неизменным. Поэтому с увеличением UKб должна уменьшается избыточная концентрация дырок на границе эмиттерного перехода (ΔР2
а) при увил. Т увел.τ время жизни носителей.( ловушеи не успевают захватывать)
б) при увел. Т уменьш.μ подвижность отсюда возрастает рб
-коэф. уселения по току в схеме с ОЭ. β также зависит от как и α но с большим масштабом по оси изменения β. (Графики такие же (α =0,98 β =49) (α=0,99 β=99))
15.Входные характеристики транзистора с общей базой. Их зависимость от напряжения колектора и температуры.
Входные характеристики: Входная характеристика при UКБ = 0 (зависимость 1, рис.3) аналогична прямой ветви вольтамперной характеристики полупроводникового диода. Эта характеристика начинается из начала координат, при увеличении входного напряжения ток эмиттера /3 экспоненциально увеличивается:
При больших токах Iэ вх. хар-ки близки к линейным. Наклон лин. участка опр-ся в объемным сопротивлением базы rБ.
При напряжении UKБ > 0 кривые смещаются вверх относительно начала координат и к оси токов (падение напряжения на объемном сопр. базы rБ при протекании тока IK0)
При “-“ напряжении на К через КП протекает ток обратносмещенного рn-перехода Iко, а т.к. база мало легирована примесями, то на rБ будет создаваться падение напряжения UrБ = Iко rБ, в результате чего Э получает положительное смещение относительно базы и начинает инжектировать дырки, что приводит к появлению нач. тока Э:
(UKБ=0)
Смещение характеристик влево при увеличении коллекторного напряжения объясняется эффектом модуляции толщины базы. Эффект модуляции заключается в изменении толщины базы при изменении напряжения на коллекторе.
Вх. хар-ки кремниевого транзистора (а) смещены от начала координат в сторону больших прямых напряжений (контактная разность потенциалов у кремниевых транзисторов больше, чем у германиевых).
Вх. хар-ки германиевых транзисторов при различных Т – (б). С увеличением Т вх. ток увеличивается, вх. хар-ка смещается влево вследствие роста внутр. эн. осн. носителей заряда и уменьшения контактной разности потенциала φкэ и потенциального барьера. Изменение начального тока эмиттера с ростом температуры окружающей среды связано с экспоненциальной зависимостью от температуры неуправляемого тока коллекторного перехода. С увеличением тока Iко возрастает падение напряжения на объемном сопротивлении базы, и это приводит к росту начального тока эмиттерного перехода.