чем объясняется электропроводность диэлектриков

Чем объясняется электропроводность диэлектриков

Общие представления об электропроводности диэлектриков

Сквозной ток Iскв обусловлен смещением свободных носителей заряда.

В момент включения или выключения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм (рисунок 3.1), обусловленный быстрыми видами поляризации. Токи смещения очень кратковременны и их не удается зафиксировать прибором.

В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс, возникающий за счет замедленных поляризаций.

При длительной работе диэлектрика под напряжением падение сквозного тока вызвано электрической очисткой в случае, когда проводимость материала обусловлена ионами посторонних примесей. В случае, когда проводимость материала обусловлена собственными ионами, при длительном приложении напряжения может наблюдаться старение диэлектрика (уменьшение электрического сопротивления).

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Рис. 3.1. Временные зависимости токов, протекающих через неполярный диэлектрик при включении и выключении напряжения

При постоянном напряжении абсорбционные токи, меняя свое направление, проходят только в периоды включения и выключения напряжения (рисунок 3.2).

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Рис. 3.2. Временные зависимости токов для диэлектрика, в котором возникают токи абсорбции

При переменном напряжении они имеют место в течение всего времени нахождения материала в электрическом поле.

При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв, исключая токи абсорбции.

Удельное объемное сопротивление ( r v )- численно равно R куба с ребром в 1 м (мысленно выделенного из исследуемого материала), если ток проходит через 2 противоположные грани куба.

h расстояни е между электродами

Поверхностное сопротивление твердых диэлектриков

Удельное поверхностное сопротивление r s численно равно сопротивлению квадрата (мысленно выделенного на поверхности исследуемого материала), если ток проходит через 2 противоположные стороны этого квадрата

Поверхностная электропроводность обусловлена наличием влаги, загрязнениями и различными дефектами поверхности диэлектрика.

Сильно увлажняются полярные и пористые диэлектрики. r s диэлектриков связано с величиной краевого угла смачивания и твердостью диэлектрика. Чем меньше краевой угол и выше твердость, тем ниже r s увлажненного диэлектрика.

К гидрофобным диэлектрикам относятся неполярные диэлектрики, чистая поверхность которых не смачивается водой, поэтому при помещении диэлектрика во влажную среду его поверхностная электропроводность практически не меняется.

К гидрофильным диэлектрикам относятся полярные и большинство ионных диэлектрики со смачиваемой поверхностью. При помещении диэлектрика во влажную среду его поверхностная электропроводность увеличивается. Кроме того, к поверхности полярных диэлектриков могут прилипать различные загрязнения, также приводящие к росту поверхностной проводимости.

К «промежуточным» диэлектрикам условно относят слабополярные диэлектрики (например, лавсан).

При нагревании увлажненной изоляции r s может расти с повышением температуры с последующим спадом после высушивания. При низких температурах r s высушенного материала имеет значительно более высокие значения (на 6-7 порядков выше).

Для увеличения значения r s диэлектриков пользуются различными приемами: промывкой в кипящей дистиллированной воде или растворителях в зависимости от вида диэлектрика, прогреванием до достаточно высокой температуры, покрытием поверхности влагостойкими лаками, глазурями, размещением изделий в защитных корпусах и оболочках и т.д.

Электропроводность газообразных диэлектриков

В области слабых электрических полей носители заряда в газах появляются в результате воздействия на нейтральные молекулы газа быстрых частиц, квантов света, радиоактивного, ультрафиолетового и других излучений.

В результате часть нейтральных молекул распадается на положительные ионы и электроны. Электроны в большинстве случаев захватываются другими нейтральными молекулами, образуя отрицательные ионы, которые участвуют в общем тепловом движении. Некоторая часть электронов, встречаясь с положительными ионами, рекомбинирует, образуя нейтральные частицы, при этом выделяется рекомбинационное излучение в виде квантов света.

Вольтамперная характеристика газообразного диэлектрика для слабых и средних полей (до 10 6 В/м) приведена на рисунке 3.3.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Рис. 3.3. Вольт-амперная характеристика газообразного диэлектрика:

ab – область слабых полей, закон Ома;

bc – область средних полей, насыщение;

cd – область сильных полей, ударная ионизация.

Несамостоятельная электропроводность осуществляется за счет ионов и электронов, образующихся в результате ионизации, вызванной внешним энергетическим воздействием, таким как космические и солнечные лучи, радиоактивное излучение Земли. На участке cd начинается ударная ионизация молекул электронами. Это область сильных полей (для воздуха Е>10 6 В/м). При напряженности Епр газ пробивается (самостоятельный разряд). Возрастание тока при Е > Екр (участок cd ) обусловлено увеличением числа носителей заряда в результате электронной ударной ионизации, фотоионизации и холодной эмиссии электронов из катода. При Екр наступает пробой, в этом состоянии газ (воздух) утрачивает свои электроизоляционные свойства, так как между электродами образуется плазменный газоразрядный канал проводимости.

Электропроводность жидких диэлектриков

Неполярные и слабополярные жидкости: носители заряда в основном ионы, возникающие при диссоциации молекул примеси.

Степень диссоциации – это отношение числа диссоциированных молекул к общему числу молекул жидкости.

С увеличением e вещества возрастает степень диссоциации, которая также зависит от концентрации примеси.

Диссоциация молекул жидкости с ионным характером связи приводит к собственной электропроводности.

Электронная электропроводность может наблюдаться в сильных полях при эмиссии электронов с катода в очищенных от примесей жидкостях.

Молионная электропроводность – характерна для масел с включениями влаги (воды) и для лаков с мелкодисперсными наполнителями.

Эти заряженные частицы называются молионами.

Удельное сопротивление жидкостей e уменьшается с ростом температуры по экспоненциальному закону

где B – константа, W – энергия диссоциации, k – постоянная Больцмана. По аналогичному закону изменяется и вязкость жидкости.

Удельные проводимости неполярных, слабополярных и сильнополярных жидких диэлектриков приведены в таблице.

Источник

Электронная библиотека

По сравнению с электропроводностью проводников (см. разд. 2) и полупроводников (см. разд. 3) электропроводность диэлектриков имеет ряд характерных особенностей.

Все диэлектрики под воздействием не изменяющегося во времени напряжения пропускают некоторый, хотя и весьма незначительный ток, называемый током утечки (I), который складывается из двух составляющих: объемного тока ( ) и поверхностного тока ( ) (рис. 4.1).

Следовательно, общая проводимость диэлектрика ( ) складывается из объемной ( ) и поверхностной ( ) проводимостей:

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Величины, обратные указанным проводимостям, соответственно называют объемным ( ) и поверхностным ( ) сопротивлениями.

Следующей характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем (рис. 4.2). При подключении диэлектрика к не изменяющемуся во времени напряжению в начальный промежуток времени в цепи протекает быстро спадающий ток смещения (Iсм) плотность которого равна:

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Этот ток спадает за время 10 13 …10 15 с порядка постоянной времени ( ) схемы «источник-образец». То есть в первом приближении можно сказать, что этот ток обусловливается зарядкой геометрической емкости. Однако общий ток продолжает изменяться и после этого. Это спадание может продолжаться в течение нескольких минут и даже часов и обусловлено перераспределением объемных зарядов, а также установлением медленных (в основном) и быстрых видов поляризации. Эту спадающую часть тока называют током абсорбции ( ).

Со временем, когда произойдет зарядка геометрической емкости, т.е. установятся все виды поляризации, произойдет перераспределение объемных зарядов, и в диэлектрике останется не изменяющийся во времени электрический ток – сквозной ток ( ), который обусловлен поверхностной и объемной электропроводимостями:

При изменении удельного сопротивления диэлектриков ток абсорбции необходимо исключить, выдерживая образец под напряжением в течение некоторого времени.

Для сравнительной оценки различных диэлектриков в отношении их объемной и поверхностной электропроводности пользуются значениями удельного объемного сопротивления ( ), и удельного поверхностного сопротивления ( ). По удельному, объемному сопротивлению может быть определена удельная объемная проводимость:

а по удельному поверхностному сопротивлению – удельная поверхностная проводимость:

Объемное удельное сопротивление образца диэлектрика произвольной формы может быть найдено из выражения:

где – объемное сопротивление образца произвольной формы, Ом; – геометрический параметр, м.

Так, для плоского образца, у которого (см. разд. 1), удельное сопротивление равно:

где – площадь поперечного сечения образца (площадь измерительного электрода), м 2 ; – толщина образца, м.

Объемная удельная проводимость ( ) измеряется в сименсах на метр ( ).

Удельное поверхностное сопротивление (в омах) может быть найдено из выражения:

где – поверхностное сопротивление образца, Ом; – длина электродов, м; – расстояние между электродами, м.

Удельная поверхностная проводимость измеряется в сименсах.

Электропроводность газов обусловлена наличием в них некоторого количества заряженных частиц. В нормальных условиях число заряженных частиц (ионов газа или твердых и жидких примесей, находящихся во взвешенном состоянии) в 1 м 3 атмосферного воздуха не превышает нескольких десятков миллионов.

Происхождение носителей заряда в газах объясняется различными факторами:

· радиоактивным излучением Земли;

· радиацией, проникающей из космического пространства;

· иногда тепловым движением молекул и т.п.

При поглощении энергии бомбардирующей частицы молекула газа теряет электрон и превращается в положительный ион. Высвобождаемый при этом электрон «прилипает» к нейтральной молекуле, образуя отрицательный ион.

В ряде случаев концентрация свободных носителей заряда может достигать очень больших значений. Это обычно связано с фотоионизацией молекул газа. Такая ионизация может происходить, например, при воздействии ионизирующих излучений: рентгеновских и гамма-лучей, потоков нейтронов и т.п. Заряженные ионы так же, как и окружающие их не имеющие электрического заряда молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концен

трации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация. В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации заряженных частиц устанавливается динамическое равновесие.

Вычислим удельную проводимость газа. При наложении внешнего электрического поля положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами со скоростями соответственно:

где и – подвижности положительного и отрицательного ионов.

Зависимость между числом имеющихся в 1 м 3 газа положительных ( ) и отрицательных ( ) ионов и числом ионов, рекомбинирующих в 1 м 3 газа за время 1 с ( ), можно представить так:

где – коэффициент рекомбинации ионов газа, м 3 /с. Для воздуха, например, м 3 /с.

В стационарном случае

Если напряженность поля (Е) очень мала, так что протекающий ток не меняет концентрацию ионов в газе, плотность тока может быть определена из выражения:

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков. (4.9)

Участок 0АВ называют областью несамостоятельной электропроводности, так как электропроводность (концентрация свободных носителей зарядов) определяется мощностью внешних ионизаторов.

Значение удельного сопротивления воздуха ( ) составляет порядка 10 18 Ом∙м. При дальнейшем повышении напряженности поля В/м (рис. 4.3, участок ВС) происходит значительное повышение плотности тока вследствие процессов ударной ионизации молекул электронами в сильном электрическом поле вплоть до пробоя газового промежутка. Участок ВС – называют областью самостоятельной электропроводности.

Электропроводность жидкостей обусловлена ионами, образующимися при диссоциации молекул самой жидкости или ее примесей. В связи с увеличением энергии хаотического теплового движения молекул степень ионизации и концентрации ионов растет с повышением температуры по экспоненциальному закону:

где W – энергия диссоциации. Отсюда удельная проводимость равна:

где n – заряд иона; и – подвижности положительных и отрицательных ионов соответственно; А – константа.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриковЛогарифм проводимости жидкости линейно уменьшается с увеличением обратной абсолютной температуры 1/Т (рис.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Удельное сопротивление жидкостей равно:

В жидкостях (и газах) с примесями иногда наблюдается молионная электропроводность, характерная для коллоидных систем, которые представляют собой тесную смесь двух фаз веществ; причем одна фаза в виде мелких частиц (капель, зерен, пылинок и т.п.) равномерно взвешена в другой. Из коллоидных систем наиболее часто встречаются в электроизоляционной технике эмульсии (обе фазы – жидкости) и суспензии (дисперсная фаза – твердое вещество, дисперсионная среда – жидкость). Ста

бильность эмульсий и суспензий, т.е. способность их длительно сохраняться без оседания дисперсной фазы на дно сосуда (или всплывания ее на поверхность) вследствие различия плотностей обеих фаз, объясняется наличием на поверхности частиц дисперсной фазы электрических зарядов (при одноименном заряде частицы взаимно отталкиваются). Такие заряженные частицы дисперсной фазы и называют молионами. При наложении на коллоидную систему электрического поля молионы приходят в движение, что выражается в виде электрофореза.

Примеры практического использования электрофореза – покрытие металлических предметов каучуком и смолами из их суспензий, обезвоживание различных материалов в электрическом поле и др. В отличие от электролиза при электрофорезе не наблюдается образования новых веществ, а лишь меняется относительная концентрация дисперсной фазы в различных частях объема вещества. Молионная электропроводность присуща жидким лакам и компаундам, увлажненным маслам и т.п. Ее вклад в проводимость, как и вклад ионной электропроводности, зависит от вязкости жидкости.

Электропроводность твердых диэлектриков

Носителями заряда в диэлектриках обычно оказываются ионы малых размеров, подвижность которых выше:

· протоны в водородсодержащих соединениях (в полимерах, кристаллах типа KH2PO4 и других с водородными связями);

· ионы натрия (в NaCl и в содержащем натрий стекле) и т.д.

При этом следует отметить, что число диссоциированных (сорванных) ионов ( ) с изменением температуры изменяется по экспоненциальному закону:

где – общее число ионов i-го типа; – энергия диссоциации иона i-го типа; кТ – тепловая энергия.

Удельная электрическая проводимость твердых диэлектриков, как и полупроводников, растет с ростом температуры по экспоненциальному за­кону:

Однако зависимость часто обусловлена не только экспоненциальным ростом концентрации носителей (рис. 4.5, б)

но и ростом подвижности:

где Wn – энергия перемещения иона, определяющая переход его из одного равновесного состояния в другое). Это связано с тем, что дрейфовая подвижность ионов мала и осуществляется путем их перескока с ловушки на ловушку, разделенных потенциальным барьером Wn (так называемая «прыжковая» электропроводность). Вероятность таких тепловых перескоков прямо пропорциональна exp(-Wn/kT) (рис. 4.5, а).

Обычно в диэлектрике имеется несколько видов носителей заряда. Например, кроме ионов основного вещества могут быть слабо связанные ионы примесей. В этом случае удельная проводимость складывается из собственной проводимости с энергией активации (W) и примесной проводимости с энергией активации (Wnp):

где — коэффициент, объединяющий постоянные ( – заряд i-го носителя; – концентрацию i-го носителя; – подвижность i-го носителя); Wi — энергия активации.

В широком диапазоне температур зависимость логарифма удельной проводимости (γ) от обратной величины абсолютной температуры (Т) должна состоять из двух прямолинейных участков с различными значениями угла наклона к оси абсцисс (рис. 4.6). При температуре выше точки излома А электропроводность определяется в основном собственными дефектами – это область высокотемпературной, или собственной электропроводности. Ниже излома, в области низкотемпературной, или примесной электропроводности, зависимость более пологая.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриковВ отличие от трудно воспроизводимой низкотемпературной области электропроводности, определяемой в основном природой и концентрацией примесей, значение собственной удельной проводимости не зависит от удельной проводимости и не зависит от примесей, хорошо воспроизводимо и является физическим параметром данного соединения.

Ионная электропроводность сопровождается переносом вещества: положительные ионы движутся к катоду, а отрицательные к аноду. Электролиз особенно ярко выражен при повышенных температурах, когда ρ мало, и при приложении высоких постоянных напряжений. По выделившемуся на электродах веществу можно определить характер носителей заряда. У диэлектриков с чисто ионным характером электропроводности строго выполняется закон Фарадея – закон пропорциональности между количеством пропущенного электричества и количеством выделившихся веществ.

Некоторые диэлектрики (например, и другие титансодержащие керамические материалы) обладают электронной или дырочной электропроводностью. Однако носителями часто являются электроны не основного вещества, а примесей и дефектов. В титансодержащей керамике при высокотемпературном синтезе появляются в значительном количестве кислородные вакансии, отдающие слабо связанные электроны или дырки. От них и зависит наблюдаемая электропроводность.

Твердые пористые диэлектрики при наличии в них влаги, даже в ничтожных количествах, резко увеличивают свою электропроводность (рис 4.7). На участке кривой АВ значение сопротивления снижается в результате изменения степени диссоциации молекул воды и молекул диэлектрика в водном растворе на ионы. Участок ВС обусловлен процессами сушки, а на участке СД происходит диссоциация молекул диэлектрика на ионы.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриковМы рассматривали электропроводимость твердых диэлектриков при относительно невысоких значениях напряженности электрического поля. При достаточно больших напряженностях электрического поля в диэлектриках появляется электронная составляющая электропроводности, быстро возрастающая с увеличением напряженности электрического поля, в связи с чем наблюдается нарушение закона Ома. При напряженностях электрического поля В/м, т.е. близких к пробивным напряженностям поля, зависимость электропроводности от величины напряженности поля подчиняется закону Пуля:

Для ряда диэлектриков более точным оказывается закон Френкеля:

где – электропроводность в слабых электрических полях; – коэффициенты нелинейности, характеризующие свойства диэлектрика; Е – напряженность электрического поля.

Срочно?
Закажи у профессионала, через форму заявки
8 (800) 100-77-13 с 7.00 до 22.00

Источник

Диэлектрики

Все вещества по-разному проводят электрический ток. Это объясняется тем, что у каждого вещества свои свойства, свой набор атомов и соответственно молекул. Это влияет на плотность вещества, количество валентных электронов и энергетических уровней.

Электрические диэлектрики. Какие они?

Как нас учили в школе, некоторые вещества плохо проводят электрический ток, а некоторые хорошо. Например, дерево очень плохо проводит, а вот алюминий проводит в разы лучше. Так вот, если вспомнить терминологию, то вещества, проводящие электричество хорошо, называются проводниками, а те, что его проводят плохо, называются… Ну как же их? Ах да, они называются электрическими диэлектриками.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Конечно мы не говорим о том, что они совсем ток не проводят, нет. Они, конечно же являются проводниками, просто сравнительно довольно плохими. Диэлектрики с другой стороны еще и вещества, которые могут довольно долго хранить в себе электрическое поле, причем на это не нужна будет внешняя энергия.

Что будет, если воздействовать извне?

Если приложить к электрическому диэлектрику внешнее электрическое поле, то свободные заряды диэлектрика начнут постепенно нейтрализовывать его. Причем, это будет происходить до тех пор, пока не закончатся электроны или результирующее поле не станет равным нулю.

Чтобы понять то какие вещества вообще могут взаимодействовать с электрическими полями, нам нужно разобраться в таком термине, как электропроводность. Если говорить простым языком, то для взаимодействия с электрическим полем у вещества должна быть довольно низкая электропроводность.

Если мы будем говорить точнее, то удельное сопротивление должно быть сравнимо с 1010 Q-см или даже сильно превосходило это значение.

А откуда берется низкая электропроводность?

Как мы знаем из базовой программы по физике, все вещества состоят из атомов. И эти атомы очень активно взаимодействуют друг с другом. У каждого из них есть свой заряд, и благодаря зарядам атомы так или иначе взаимодействуют.

Однако, как же создается такая низкая электропроводность? Вроде же есть атомы, они как-то там взаимодействуют и ток по ним мог бы идти, но не все так просто. Залогом того, чтобы проводимость вещества была низкой, выступает очень важный факт.

Если при наложении поля электроны, ионы и другие частицы не смогут свободно перемещаться или будут это делать очень плохо, то и электропроводность будет низкая, ведь все будет стоять на своих местах и свободным электронам будет просто некуда деться.

Кристаллическая решетка поможет разобраться

Сейчас в познании электрических диэлектриков нам поможет разобраться кристаллическая решетка. Для того, чтобы термины не казались нам непонятными, давайте их освежим в своей голове. Кристаллическая решетка — это группа таких точек, которые образуются в веществах (а точнее в кристаллах) под воздействием сдвигов (они, кстати, могут происходить из-за воздействия электрического поля. Отлично, вспомнили. Давайте теперь разбираться.

Как мы помним, в атоме, который в данный момент изолирован, энергия электронов не может принимать какие угодно значения. В таком состоянии энергия будет принимать четко обозначенные значение W1, W2, W3 и т.д. Вот, взгляните на график:

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Конечно же, каждый из этих уровней будет немного смещен после того, как атомы войдут в состав твердой кристаллической решетки. В итоге зона, в которой будет концентрировать вся энергия будет общей для всей решетки.

Итак, в кристаллической решетке энергия электронов лежит в пределах четко определенных зон и все значения, которые находятся вне этой зоны, запрещены. Это мы поняли. Двигаемся дальше. По принципу Паули каждая зона может вместить в себя ограниченное количество электронов. Сначала электроны будут заполнять нижние уровни, а когда эти ряды заполняться полностью, они будут заполнять верхние ряды.

И вот теперь ключевая мысль, которую нужно понять, чтобы разобраться в том, почему те или иные вещества проводят электрический ток. Раз электроны постепенно заполняют ряды от нижнего к верхнему, то на самом верхнем ряду они либо заполнят этот ряд полностью, либо только частично.

Так вот, при частичном заполнении ряда электроны смогут свободно по нему перемещаться, а значит и будут проводить ток. Бинго! А вот в случае, если электроны все-таки заполнят верхний уровень, то при воздействии электрического поля никаких сдвигов не произойдет и, соответственно, такое вещество можно назвать диэлектриком.

Очень похожая ситуация происходит и с аморфными твердыми телами (ну например янтарь или полиэтилен). По определению, у таких веществ расположение атомов очень случайно, а зоны, общие для всего кристалла просто не могут существовать, а значит они тоже электрические диэлектрики.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриковТочно, кроме электронов же еще есть ионы, и они тоже могут повлиять на конечную ситуацию. Их тепловое движение состоит в том, что они колеблются где-то около положения равновесия. Однако интересно то, что некоторые из них все же способны вырваться и преодолеть то, что их сдерживает.

Такие ионы можно условно называть свободными. Они перемещаются в места, где потенциальная энергия их будет очень мала. Если мы говорим об электрических диэлектриках (а мы все еще о них говорим), то такие места в плотной кристаллической решетке для них — это узлы.

Так вот, согласно теории Вальтера Шоттки, такое может происходить только тогда, когда некоторое количество узлов в решетке уже занято ионами. В физике часто называют такие узлы “дырками”. Тогда тепловое движение будет сводиться к беспорядочному перескакиванию ионов с одного узла на другой.

Диэлектрик раз и навсегда?

Когда мы называем то или иное вещество диэлектриком, мы должны понимать, что это название довольно-таки условное, ведь при определенном воздействии на вещество оно уже может потерять свойства диэлектрика. Почему так происходит?

Дело в том, что электрический ток воздействует на вещество лишь очень короткий отрезок времени, из-за чего поле в нем тоже возникает ненадолго. Поэтому, даже вещества с очень низким удельным сопротивлением можно тоже считать диэлектриком при определенных условиях.

Хорошим примером будет дистиллированная вода. А вот если напряжение будет очень долго воздействовать на вещество, то его уже можно смело называть проводником. Вот такая магия.

Аморфные диэлектрики. Какие они?

Чем особенны аморфные диэлектрики? Главное, что отличает их от других — это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.

Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.

Если провести аналогию с кристаллической решеткой, то как раз эти ионы и можно назвать свободными. Как мы с вами теперь выяснили, в целом такая обстановка при движении ионов в аморфных телах идентична твердым, но с небольшими оговорками.

Помещаем в постоянное поле

Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:

Что будет давать упорядоченное перемещение

При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:

Поговорим о поляризации

Следующий важный термин, о котором пришло время узнать — это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.

При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным — отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.

Проницаемость диэлектрика

А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.

Как на проницаемость диэлектрика влияет температура?

Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.

Пробой диэлектрика

Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?

Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.

Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.

Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит. Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:

Поле в диэлектрике

Как мы уже поняли, поле в диэлектрике направлено ровно против внешнего электрического поля. Но этих знаний нам не хватит, чтобы хорошо разбираться в диэлектриках.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Поэтому давайте немного углубимся в эту тему. Напомним, что поляризация диэлектрика — это когда заряды перенаправляются так, что минусы смотря в одну сторону, а плюсы — в другую. Так вот, давайте же разберемся в видах поляризации.

Деформационная (или же электронная)

Этот вид поляризации интересует нас больше всего. Стоит отметить, что такая поляризация характерна для веществ, состоящих из неполярных молекул, то есть у которых нет дипольных моментов. Что происходит? Все просто — главное, что нужно понять, это то, что смещаются электронные оболочки. При этом, положительно заряженные атомные ядра смещаются по направлению к внешнему полю, а отрицательно заряженные электронные оболочки — против поля.

Дипольная (или же ориентационная)

Это один из наиболее распространенных видов поляризации. Однако здесь все с точностью до наоборот. Здесь уже меняют ориентацию диполи. Здесь все еще просто — когда поле снаружи не воздействует на вещество, порядок у диполей абсолютно хаотичен, но когда внешнее поле начинает воздействовать на вещество, то абсолютно все диполи разворачиваются положительной стороной к полю, которое на него воздействует. Как мы уже разбирались выше, стабильность положения диполей определяется напряженностью поля и температурой вещества.

Ионная

Да, этот вид поляризации мы тоже не забыли. Здесь речь идет о смещении положительной решетки ионов. Они расположатся вдоль поля, а отрицательные — против.

Так почему же в самом начале мы сказали, что нас больше всего будет интересовать именно первый вид поляризации, если мы будет рассматривать положительные заряды? Все просто. Положительные заряды играют какую-то роль только при таком воздействии внешнего поля на вещество. Поэтому можете считать, что вы уже знаете о них все, что нужно.

Плоский диэлектрик

Почему-то многие иногда называют диэлектрик внутри плоского конденсатора. Быть может, так его называть просто удобнее. На самом деле, плоский конденсатор — это очень интересное устройство, поэтому поговорим о нем и о его диэлектрике (плоском диэлектрике раз уж на то пошло).

Раз уж мы говорим о конденсаторе, то давайте сразу же научимся определять его емкость (или же емкость диэлектрика). Для этого воспользуемся этой прекрасной формулой:

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Давайте поймем, что здесь означает каждая из букв. S — это, очевидно, площадь обкладок данного плоского конденсатора. Буква d обозначает расстояние между обкладками, а остальные две переменные — это диэлектрическая проницаемость диэлектрика (плоского диэлектрика) и электрическая постоянная (если кто-то из вас подзабыл, 8,854 пФ/м)

Странно, но сейчас плоские конденсаторы встречаются очень редко. Возможно, это связано с пленочными технологии, которые настолько микроскопически, что делать их довольно сложно и дорого.

Почему плоский с конденсатор с диэлектриком не могут друг без друга?

Ответ на этот вопрос не так уж сложен. Все дело в том, что от диэлектрика зависит самый важный и основной элемент в плоском конденсаторе — его емкость. Давайте поговорим о том, как это работает. Как мы знаем, аморфное вещество состоит из диполей, которые, в свою очередь, укреплены на своих местах и хаотично ориентированы.

Когда поле извне воздействует на это самое аморфное вещество, диполи разворачиваются вдоль силовых линий это внешнего поля. При этом, поле ослабевает, а заряд постепенно накапливается, пока поле не перестанет действовать. И так длится цикл за циклом. Именно поэтому плоский конденсатор с диэлектриком можно рассматривать только вместе.

Как не путать проводники и диэлектрики

До этого мы с вами очень подробно рассмотрели диэлектрики, узнали, как они работают, как устроены внутри. Теперь же давайте узнаем, как они используются в реальной жизни и как не спутать их с проводниками.

Где применяются диэлектрики

Диэлектрики применяются во многих сферах жизни, а именно в тех, где нужен электрический ток.

чем объясняется электропроводность диэлектриков. Смотреть фото чем объясняется электропроводность диэлектриков. Смотреть картинку чем объясняется электропроводность диэлектриков. Картинка про чем объясняется электропроводность диэлектриков. Фото чем объясняется электропроводность диэлектриков

Особенно активно их используют в сельском хозяйстве, промышленности и приборостроении.

Твердые диэлектрики

Диэлектрики бывают разные. Например, твердые диэлектрики могут обеспечивать безопасность приборов, работающий на электричестве. Они являются хорошими изоляторами тока, а значит очень сильно влияют на долговечность этих приборов. Одним из примеров можно назвать диэлектрические перчатки.

Жидкие диэлектрики

А вот диэлектрики жидкие нужны немного для другого. Они то используются в конденсаторах, кабелях, системах охлаждения с циркуляцией воздуха и во многих других приборах.

Газообразные диэлектрики

Также существуют и газообразные диэлектрики, хоть они и не так популярны в наши дни. Эти диэлектрики создала сама природа. Например, водород используется для мощных генераторов, у которых просто запредельная теплоемкость, а вот азот помогает по максимуму сократить окислительные процессы. Самым же простым примером газообразного диэлектрика мы считаем воздух. Да-да, это тоже диэлектрик, причем еще и тепло может отводить.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *