чем обусловлен цвет водорослей

Красные водоросли

Встречаются все оттенки красного: от нежно-розового или ярко багряного («багрянки») до темно-фиолетового.

Кроме хлорофилла в их хроматофорах содержится фикоэритрин, пигмент, обладающий желто-оранжевой флуоресценцией (поглощение квантов света) и особым спектром, отличающимся от спектра хлорофилла. Благодаря этому красные водоросли способны поглощать свет почти всей видимой части спектра, что дает им возможность расти и развиваться на больших глубинах. Запасное вещество, багрянковый крахмал, откладывается в цитоплазме.

Наиболее известные представители красных водорослей:

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Значение красных водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Строение водорослей

Современная биология не считает дифференциацию тканей определяющим различием, сейчас существенным считают фундаментальные различия в строение клеток, обмене веществ. Тем не менее, во многих устаревших пособиях этот термин используется, и я обязан предупредить вас о нем.

Наука о водорослях называется альгология (от лат. alga — морская трава, водоросль и греч. λόγος — учение).

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Среди водорослей есть одноклеточные и многоклеточные, некоторые водоросли достигают в длину 100-200 метров. Способ питания водорослей автотрофный: они синтезируют органические вещества в процессе фотосинтеза. Солнечный свет, проходя через толщу воды, рассеивается, что делает фотосинтез с увеличением глубины все труднее и труднее. Поэтому кроме хлорофилла они часто имеют и другие пигменты.

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Жизненный цикл водорослей

Жизненные циклы водорослей разнообразны, обусловлены рядом экологических факторов. Мы разберем жизненный цикл на примере зеленой водоросли ульвы (морского салата).

Для начала отметим, что в целом жизненный цикл водорослей представляет собой чередование двух фаз: гаплоидной (гаметофита) и диплоидной (спорофита). Гаплоидной фазой называется фаза, при которой клеточные ядра содержат непарный (половинный) набор хромосом. К гаплоидной фазе всегда принадлежат гаметы: сперматозоиды, спермии (отличающиеся от сперматозоидов отсутствием жгутика), яйцеклетки.

При слиянии двух гамет: яйцеклетки (n) и спермия (n) образуется зигота (2n) из которой развивается спорофит (2n), таким образом, в спорофите восстанавливается диплоидный набор хромосом. В зооспорангии на спорофите в результате мейоза образуются зооспоры (n), которые делятся митозом, порастают и образуют мужские и женские гаметофиты (n). Клетки гаметофитов делятся митозом, образуются гаметы (n), которые сливаются в зиготу (2n), цикл замыкается.

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Типы половых процессов

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Значение водорослей

В Мировом океане водоросли составляют основную часть биомассы. Именно они являются главными продуцентами (производителями) органического вещества, преобразуя в ходе фотосинтеза энергию солнечного света в энергию химических связей. Значение водорослей для человека трудно переоценить: содержащиеся в них вещества необходимы для нормального роста и развития животных и человека (к примеру, морская капуста (ламинария) отличается большим содержанием йода.)

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Бурые и красные водоросли. Роль водорослей в природе и жизни человека

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Конспект урока «Бурые и красные водоросли. Роль водорослей в природе и жизни человека»

Водорослиэто самые древние растения на Земле. Их относят к низшим растениям, они не имеют ни корней, ни стеблей, ни листьев.

На прошлом уроке вы познакомились с зелёными водорослями: хламидомонадой, спирогирой, ульвой, нителлой, хлореллой и улотриксом.

Перейдём к изучению бурых и красных водорослей.

Бурые водоросли — это в основном морские, многоклеточные растения. Их длина колеблется от микроскопических до гигантских (несколько десятков метров).

Например, представители рода Макроцистис, которые могут достигать 200 м в длину, формируют большие подводные леса у побережий Америки.

Общий внешний признак этих водорослей — жёлто-бурая окраска слоевищ. Слоевища этих водорослей могут быть нитевидными, шаровидными, пластинчатыми, кустообразными.

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Иногда водоросли содержат воздушные пузыри, заполненные воздухом, удерживающие их в воде в вертикальном положении. Например, как у фукусов ― водорослей прибрежных участков морей северного полушария.

К грунту бурые водоросли прикрепляются ризоидами или дисковидно разросшимся основанием слоевища. Например ламинария, крупная бурая водоросль, прикрепляется ко дну ризоидами.

Слоевища ламинарий имеют вид цельных или пальчато-рассечённых листовидных пластинок, достигающих в длину 1–5 м и более.

Ламинарию ещё называют морской капустой, многие из вас её наверняка пробовали.

В прибрежной полосе Чёрного моря часто встречается водоросль цистозейра. Представители этой группы играют важную роль в морских экосистемах. Заросли цистозейры создают уникальную среду обитания для многих морских организмов.

Виды рода Саргассум создают окружающую среду тропических вод Саргассова моря, крупнейшего места произрастания бурых водорослей в тропиках.

Красные водоросли, или багрянки как их ещё называют, ― в основном многоклеточные морские растения.

Лишь некоторые виды встречаются в пресных водоёмах. Багрянки обладают характерной красной окраской. У некоторых форм окраска тёмно-красная (почти чёрная), у других розоватая.

Размеры багрянок обычно колеблются от нескольких сантиметров до метра в длину. Но среди них есть и микроскопические формы.

Внешне красные водоросли весьма разнообразны: нитевидные, цилиндрические, пластинчатые и кораллоподобные, в разной мере рассечённые и разветвлённые.

В море красные водоросли встречаются повсеместно в самых разных условиях. Обычно они прикрепляются к скалам, валунам, искусственным сооружениям, а иногда и к другим водорослям.

Наиболее распространённым видом считается водоросль филлофора — кустик высотой около 50 сантиметров, с толстой ножкой и множеством веточек-отростков.

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Интересен её яркий, особенно по сравнению с другими водорослями этого вида, красный цвет.

Не менее известны водоросли рода порфира ― это обычно довольно крупные водоросли. Их слоевища могут достигать в длину одного метра, иногда более. Внешне они выглядят как тонкие, широкие, волнистые пластинки, иногда со складками, могут быть с цельными или с рваными краями.

Зелёные, бурые, красные водоросли… «Почему они имеют разные цвета?» ― спросите вы. Давайте разберёмся.

Вы знаете, что клетки растений, в отличие от клеток животных, содержат пластиды.

В зависимости от окраски и выполняемой функции выделяют три типа пластид: лейкопласты —бесцветные, не содержат пигментов, хромопласты — имеют жёлтые, оранжевые или красные пигменты, хлоропласты — это пластиды которые имеют зелёный пигмент хлорофилл ― фотосинтезирующий пигмент.

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Хлоропласты созданы для того, чтобы ловить энергию солнечного света.

Спектр излучения света солнца — это смесь различных длин волн. Но об этом подробнее вы узнаете на уроках физики. Хлорофилл способен улавливать энергию света.

Эта энергия идёт на построение химических связей органических веществ (углеводов), которые образуются в результате фотосинтеза.

В этой колбе извлечённый из листьев хлорофилл в спиртовом растворе.

Хлорофилл зелёный, но если его осветить сбоку, то видно красное свечение.

Почему так происходит?

Хлорофилл имеет зелёный цвет, но зелёный цвет он не поглощает, а отражает, раз мы видим его именно таким. Оказывается, что он поглощает лучи синего и красного цвета, а отражает зелёные.

Проникая в воду, солнечный луч распадается на свои составные части, при этом лучи разных цветов проникают на различную глубину.

Красные лучи полностью поглощаются первыми несколькими десятками метров воды. Хлорофилл улавливает красные лучи, а отражает зелёный.

Зелёные лучи почти исчезают на глубине 100 метров. На такой глубине встречаются бурые водоросли, так как они содержат пигмент, способный поглощать лучи в основном от сине-зелёной до жёлто-зелёной части видимого спектра.

Фиолетовые и синие лучи проникают глубже. До глубины 268 метров встречаются красные водоросли. Их пигменты поглощают светло-зелёно-голубой свет и излучают светло-жёлто-оранжевый, который вместе образует красный. Благодаря тому, что красные пигменты способны улавливать даже очень небольшое количество света, красные водоросли могут расти на значительных глубинах.

Значение водорослей в природе и жизни человека

Водоросли служат пищей для многих животных, например, ламинарии — прекрасный корм для скота.

Водоросли использует в пищу и человек. Особенно часто ламинарию (морскую капусту), ульву (морской салат), порфиру и др. Эти водоросли, высоко ценятся как диетический пищевой продукт, так как содержат много углеводов, витаминов, богаты йодом. В медицинской промышленности из этих же водорослей получают йод.

Всем известные сладости пастилу и мармелад изготавливают на основе агара (или агар–агара) — желеобразного вещества. Его получают из красной водоросли филлофоры, которая встречается в Черном и Азовском морях.

Агар-агар необходим в кондитерской, хлебопекарной, бумажной и текстильной промышленности. Однако наибольшее количество агара используется в микробиологической промышленности: на его основе изготавливают искусственные питательные среды для выращивания полезных бактерий и грибов.

чем обусловлен цвет водорослей. Смотреть фото чем обусловлен цвет водорослей. Смотреть картинку чем обусловлен цвет водорослей. Картинка про чем обусловлен цвет водорослей. Фото чем обусловлен цвет водорослей

Водоросли поглощают из воды углекислый газ и, как все зелёные растения, выделяют кислород, которым дышат живые организмы, обитающие в воде. Водоросли вырабатывают огромное количество кислорода, который не только растворяется в воде, но и выделяется в атмосферу.

Наличие водорослей — необходимое условие для нормальной жизнедеятельности водоёмов. Хламидомонаду, хлореллу и другие одноклеточные зелёные водоросли применяют при биологической очистке сточных вод, так как они способны выбирать из воды растворенные в ней органические вещества, что способствует процессам самоочищения загрязнённых водоёмов.

Источник

05. Цвет пигментов водорослей и фотосинтез. Почему лучи синей части спектра достигают больших глубин, нежели красной?

05. Цвет пигментов водорослей и фотосинтез. Почему лучи синей части спектра достигают больших глубин, нежели красной?

Из альгологии, раздела ботаники, посвященному всему, что касается водорослей, мы можем узнать, что водоросли разных отделов способны обитать на разных глубинах водоемов. Так, зеленые водоросли встречаются обычно на глубине в несколько метров. Бурые водоросли могут жить на глубинах до 200 метров. Красные водоросли – до 268 метров.

Там же, в книгах и учебниках по альгологии, вы найдете объяснение этим фактам, устанавливающее взаимосвязь между цветом пигментов в составе клеток водорослей и предельной глубиной обитания. Объяснение примерно следующее.

Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а синие – значительно глубже. Для функционирования хлорофилла необходим красный свет. Именно поэтому зеленые водоросли не могут жить на больших глубинах. В составе клеток бурых водорослей присутствует пигмент, позволяющий осуществлять фотосинтез при желто-зеленом свете. И потому порог обитания этого отдела достигает 200 м. Что касается красных водорослей, то пигмент в их составе использует зеленый и синий цвета, что и позволяет им жить глубже всех.

Но соответствует ли данное объяснение действительности? Давайте попробуем разобраться.

В клетках водорослей отдела Зеленых преобладает пигмент хлорофилл. Именно поэтому данный тип водорослей окрашен в различные оттенки зеленого.

В красных водорослях очень много пигмента фикоэритрина, характеризующегося красным цветом. Этот пигмент и придает данному отделу этих растений соответствующий цвет.

В бурых водорослях присутствует пигмент фукоксантин – бурого цвета.

То же самое можно сказать о водорослях других цветов – желто-зеленых, сине-зеленых. В каждом случае цвет определяется каким-то пигментом или их сочетанием.

Теперь о том, что такое пигменты и для чего они нужны клетке.

Пигменты требуются для фотосинтеза. Фотосинтез – это процесс разложения воды и углекислого газа с последующим построением из водорода, углерода и кислорода всевозможных видов органических соединений. Пигменты накапливают солнечную энергию (фотоны солнечного происхождения). Эти фотоны как раз используются для разложения воды и углекислого газа. Сообщение этой энергии – это своего рода точечный нагрев мест соединения элементов в молекулах.

Пигменты накапливают все виды солнечных фотонов, которые достигают Земли и проходят сквозь атмосферу. Ошибкой было бы считать, что пигменты «работают» только с фотонами видимого спектра. Они накапливают также инфракрасные и радио фотоны. Когда световые лучи не заслоняются на своем пути различными плотными и жидкими телами, большее число фотонов в составе этих лучей достигает обогреваемое тело, в данном случае водоросль. Фотоны (энергия) нужны для точечного разогрева. Чем больше глубина водоема, тем меньше энергии достигает, тем больше фотонов поглощается на пути.

Пигменты разного цвета способны задерживать – аккумулировать на себе – разное количество фотонов, приходящих со световыми лучами. И не только приходящих с лучами, но и движущихся диффузно – от атома к атому, от молекулы к молекуле – вниз, под действием притяжения планеты. Фотоны видимого диапазона выступают только в качестве своего рода «маркеров». Эти видимые фотоны указывают нам цвет пигмента. И одновременно сообщают этим особенности Силового Поля этого пигмента. Цвет пигмента нам об этом и «говорит». Т. е. Поле Притяжения преобладает или Поле Отталкивания, и какова величина того или другого. Вот и выходит, в соответствии с этой теорией, что пигменты красного цвета должны иметь наибольшее по величине Поле Притяжения – иначе говоря, наибольшую относительную массу. А все потому, что фотоны красного цвета, как обладающие Полями Отталкивания, сложнее всего удержать в составе элемента – притяжением. Красный цвет вещества как раз нам и указывает на то, что фотоны такого цвета в достаточном количестве накапливаются на поверхности его элементов – не говоря о фотонах всех остальных цветов. Такой способностью – удерживать больше энергии на поверхности – как раз и обладает названный ранее пигмент фикоэритрин.

Что касается пигментов других цветов, то качественно-количественный состав аккумулируемого ими на поверхности солнечного излучения будет несколько иным, нежели у пигментов красного цвета. К примеру, хлорофилл, обладающий зеленой окраской, будет накапливать в своем составе меньше солнечной энергии, чем фикоэритрин. На этот факт нам как раз и указывает его зеленый цвет. Зеленый – комплексный. Он складывается из самых «тяжелых» желтых видимых фотонов и самых «легких» синих. В ходе своего инерционного движения те и другие оказываются в равны условиях. Величина их Силы Инерции равная. И потому они совершенно одинаково подчиняются в ходе своего движения одним и тем же объектам с Полями Притяжения, воздействующим на них своим притяжением. Это означает, что в фотонах синего и желтого цвета, формирующим вкупе зеленый, возникает по отношению к одному и тому же химическому элементу одна и та же по величине Сила Притяжения.

Здесь следует отвлечься и пояснить один важный момент.

Цвет веществ в том виде, в каком он нам знаком по окружающему миру – т. е. как испускание видимых фотонов в ответ на падение (не только видимых фотонов, и не только фотонов, но и других типов элементарных частиц) – явление достаточно уникальное. Оно возможно лишь благодаря тому, что в составе небесного тела, обогреваемого более крупным небесным телом (породившим его), происходит постоянное течение всех этих свободных частиц от периферии к центру. К примеру, наше Солнце испускает частицы. Они достигают атмосферы Земли и движутся вниз – прямыми лучами или диффузно (от элемента к элементу). Диффузно распространяющиеся частицы ученые именуют «электричеством». Все это было сказано для того, чтобы пояснить, почему фотоны разных цветов – синие и желтые обладают одинаковой Силой Инерции. Но Силой Инерции могут обладать лишь движущиеся фотоны. А это означает, что в каждый момент времени по поверхности любого химического элемента в составе освещаемого небесного тела движутся свободные частицы. Они проходят транзитом – от периферии небесного тела к его центру. Т. е. состав поверхностных слоев любого химического элемента постоянно обновляется.

Сказанное совершенно справедливо для фотонов двух других комплексных цветов – фиолетового и оранжевого.

И это еще не все объяснение.

Любой химический элемент устроен точно по образу любого небесного тела. В этом и заключается истинный смысл «планетарной модели атома», а вовсе не в том, что электроны летают по орбитам как планеты вокруг Солнца. Никакие электроны в элементах не летают! Любой химический элемент – это совокупность слоев элементарных частиц – простейших (неделимых) и комплексных. Также как любое небесное тело – это последовательность слоев химических элементов. Т. е. комплексные (нестабильные) элементарные частицы в химических элементах выполняют ту же функцию, что и химические элементы в составе небесных тел. И точно также как в составе небесного тела более тяжелые элементы располагаются ближе к центру, а более легкие – ближе к периферии, Так же и в любом химическом элементе. Ближе к периферии располагаются более тяжелые элементарные частицы. А ближе центру – более тяжелые. Это же правило распространяется на частицы, транзитно проходящие по поверхности элементов. Более тяжелые, чья Сила Инерции меньше, ныряют глубже к центру. А те, что легче и чья Сила Инерции больше, образуют более поверхностные текучие слои. Это означает, что если химический элемент красного цвета, то его верхний слой из фотонов видимого диапазона образован красными фотонами. А под этим слоем располагаются фотоны всех остальных пяти цветов – по нисходящей – оранжевый, желтый, зеленый, синий и фиолетовый.

Если же цвет химического элемента зеленый, то это означает, что верхний слой его видимых фотонов представлен фотонами, дающими зеленый цвет. А вот слоев желтого, оранжевого и красного цветов у него нет или практически нет.

Повторим – более тяжелые химические элементы обладают способностью удерживать более легкие элементарные частицы – красного цвета, например.

Таким образом, не совсем корректно говорить, что для фотосинтеза одних водорослей нужна одна цветовая гамма, а для фотосинтеза других – другая. Точнее сказать, взаимосвязь между цветом пигментов и предельной глубиной обитания прослежена верно. Однако объяснение верно не до конца. Энергия, требующаяся водорослям для фотосинтеза, состоит не только из видимых фотонов. Не следует забывать про ИК и радио фотоны, а также УФ. Все эти виды частиц (фотонов) требуются и используются растениями при фотосинтезе. А вовсе не так – хлорофиллу нужные преимущественно красные видимые фотоны, фукоксантину – желтые и образующие зеленый цвет, а фикоэритрину – синие и зеленые. Вовсе нет.

Ученые совершенно верно установили факт, что световые лучи синего и зеленого цветов способны достигать в большем количественном составе больших глубин, нежели желтые лучи, и тем более – красные. Причина все та же – разная по величине Сила Инерции фотонов.

Среди частиц Физического Плана, как известно, в состоянии покоя только у красных есть Поле Отталкивания. У желтых и синих вне состояния движения – Поле Притяжения. Поэтому инерционное движение только у красных может длиться бесконечно. Желтые и синие с течением времени останавливаются. И чем меньше Сила Инерции, тем быстрее произойдет остановка. Т. е. световой поток желтого цвета тормозится медленнее зеленого, а зеленый – не так быстро, как синего. Однако, как известно, в естественных условиях монохроматического света не бывает. В световом луче смешаны частицы разного качества – разных подуровней Физического Плана и различных цветов. И в таком смешанном световом луче частицы Ян поддерживают инерционное движение частиц Инь. А частицы Инь, соответственно, тормозят Ян. Большой процент частиц какого-то одного качества несомненно сказывается на общей скорости светового потока и на средней величине Силы Инерции.

Фотоны проникают в толщу воды, двигаясь либо диффузно, либо прямолинейно. Диффузное движение – это движение под действием Сил Притяжения химически элементов, в среде которых происходит движение. Т. е. фотоны передаются от элемента к элементу, но при этом общее направление их перемещения остается все тем же – в сторону центра небесного тела. При этом сохраняется инерционный компонент их движения. Однако траектория их движения постоянно контролируется окружающими элементами. Вся совокупность движущихся фотонов (солнечных) образует своего рода газовые атмосферы химических элементов – как у небесных тел – планет. Для того чтобы понять, что представляют из себя химические элементы, вы должны чаще обращаться к книгам по астрономии. Поскольку аналогия между небесными телами и элементами полнейшая. Фотоны скользят в этих «газовых оболочках», постоянно сталкиваясь друг с другом, притягиваясь и отталкиваясь – т. е. ведут себя в точности как газы атмосферы Земли.

Таким образом, фотоны движутся вследствие действия в них двух Сил – Инерции и Притяжения (к центру небесного тела и к элементам, в среде которых они движутся). В каждый момент времени движения любого фотона, чтобы узнать направление и величину суммарной силы, следует пользоваться Правилом Параллелограмма.

Фотоны красного цвета слабо поглощаются средой, в которой движутся. Причина – их Поля Отталкивания в состоянии покоя. Из-за этого у них велика Сила Инерции. Стакиваясь с химическими элементами, они с большей вероятностью отскакивают, нежели притягиваются. Именно поэтому меньшее число красных фотонов проникает в водную толщу по сравнению с фотонами других цветов. Они отражаются.

Фотоны синего цвета, напротив, способны проникать глубже фотонов других цветов. Их Сила Инерции наименьшая. При столкновении с химическими элементами они тормозятся – их Сила Инерции уменьшается. Они тормозятся и притягиваются элементами – поглощаются. Именно это – поглощение вместо отражения – позволяет большему числу синих фотонов проникать вглубь водной толщи.

В альгологии неверно используется для объяснения зависимости между цветом пигментов и глубиной обитания верно подмеченный факт – разная способность проникать в водную толщу фотонов разного цвета.

Что касается цветов, то вещества, окрашенные в красный, обладают большей массой (притягивают сильнее), нежели вещества, окрашенные в любой другой цвет. Вещества, окрашенные в фиолетовый, обладают наименьшей массой (наименьшим притяжением).

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Читайте также

3-й лунный день: Получайте энергию для больших свершений

3-й лунный день: Получайте энергию для больших свершений В третий лунный день очень интенсивно идет процесс поглощения организмом живой природной энергии. Поэтому в это время хорошо выполнять различные практики для зарядки ею. Энергия необходима для успешного свершения

Призрак в синей майке

Призрак в синей майке Внезапный звонок в дверь заставил всех напрячься. Кто бы это мог быть? На часах — уже за полночь.— Юлик, откроешь?Юль поднялся и неторопливо отправился в прихожую:— Кто там?Из-за входной двери что-то буркнули, а потом мы услышался, как Юлик отпирает

Я чувствую, что страстно хочу отбросить ревность, суждения, жадность, злость, все пороки. И все же я неосознанно цепляюсь за те части моей личности, которые мне нравится удовлетворять, — мою страсть, моего клоуна, моего цыгана, искателя приключений. Почему я так боюсь, что просто быть наблюдателем б

Я чувствую, что страстно хочу отбросить ревность, суждения, жадность, злость, все пороки. И все же я неосознанно цепляюсь за те части моей личности, которые мне нравится удовлетворять, — мою страсть, моего клоуна, моего цыгана, искателя приключений. Почему я так боюсь, что

ГЛУХАЯ ПОРА – ОТ «ГРАДЖА» К «СИНЕЙ КНИГЕ»

ГЛУХАЯ ПОРА – ОТ «ГРАДЖА» К «СИНЕЙ КНИГЕ» «Градж» – второй секретный проект. – Новая установка: покончить с НЛО. – Попытки «психологического объяснения». – Проект «Туинкл»: охота за «зелеными болидами». – Градж-доклад и пресса. – Дональд Кихо: «Наша планета под

Вибрации и лучи

Вибрации и лучи 23.04.38 Вы спрашиваете: «Какими вибрациями можно отвратить сильный припадок боли?» Вибрациями, посылаемыми Учителями, которые еще не известны науке. Приведенный в 380-м и 422-м [параграфах] случай[33] относится к моему переживанию. Во сне я видела состояние своего

ЛУЧИ АВАТАРОВ

ЛУЧИ АВАТАРОВ В проявлениях энергии и воли Великих Учителей в земной жизни есть еще одна тайна. Тот или иной Великий Учитель может не воплощаться на земном плане, но своим духовным воздействием на какого-либо близкого Ему по духу (и кармически связанного с Ним) земного

ПОЛЕТ К СИНЕЙ ЗВЕЗДЕ

ПОЛЕТ К СИНЕЙ ЗВЕЗДЕ В октябре 1989 года, в то время, когда в Сальске, находящемся в трех часах езды от Ростова-на-Дону, творятся, как мы помним, странные вещи, в редакцию ростовской газеты «Комсомолец» заявляется женщина, коренная ростовчанка, и взволнованно признается, что в

О Задачах больших и маленьких, а также о воле, творчестве и любви

Загадки больших камней Анатолий Иванов

Загадки больших камней Анатолий Иванов Дольмены, менгиры, кромлехи… Каждый, кто интересуется археологией или просто всем древним и загадочным, обязательно встречался с этими странными терминами. Это названия самых разнообразных древних сооружений из камня,

ВРЕМЯ БОЛЬШИХ ПЕРЕМЕН

ВРЕМЯ БОЛЬШИХ ПЕРЕМЕН Американец Друнвало Мельхиседек изучал физику и искусство в Калифорнийском университете в Беркли, но, по его собственному мнению, самое важное образование он получил позднее, после его окончания.Последние тридцать лет он проходил обучение более

Родители Будды достигают нирваны

Родители Будды достигают нирваны Когда Суддхадана состарился и заболел, он послал за сыном, чтобы тот пришел и можно было его увидеть еще раз перед смертью. Благословенный пришел и оставался у постели больного, и Суддхадана, достигнув совершенного просветления, умер на

Ужас Синей Бороды

Ужас Синей Бороды «Он жил, как чудовище, а умер, как святой; натура его была непостижимой – и в память простых людей, подверженных страхам, благоговеющих перед всем таинственным, он вошел под именем Синей Бороды. Образ этого противоречивого человека, познавшего на своем

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *