субдискретизация изображения что это
Цветовая субдискретизация
На практике кодирование изображений осуществляется уменьшением разрешения в цветоразностных каналах при сохранении разрешения в канале яркости.
Содержание
История
Введение
При передаче таких сигналов, возможно восстановление исходных составляющих цветов: красной (R), синей (B) и зеленой (G), которые используются в большинстве систем отображения видеоинформации.
При Y’, Cr, Cb представлении видеосигнала цветоразностные компоненты Cr, Cb передаются с пространственным разрешением, в два раза меньшим разрешения по яркостному сигналу, при этом частота дискретизации для яркостного сигнала Y’ устанавливается равной 13,5 МГц, что в два раза больше, чем для цветоразностных сигналов Cr и Cb — 6,75 МГц. Для цифровых стандартов принято базовое значение частоты дискретизации равное 3,375 МГц, таким образом, частоты дискретизации яркостного и двух цветоразностных сигналов будут находиться в соотношении 4:2:2.
Для сигналов ТВЧ согласно части II Рекомендации ITU-R 709-3 установлены частоты дискретизации сигналов яркости 74,25 МГц и цветности 37,125 МГц.
Форматы субдискретизации
Структура дискретизации сигнала обозначается как соотношение между тремя частями X:a:b (например, 4:2:2), описывающими число выборок яркостных и цветоразностных сигналов. Также иногда используется обозначение с четырьмя частями (4:2:2:4), где четвёртая цифра, если она включена, должна быть идентична первой цифре, указывающая на наличие сигнала четвертого канала, содержащего информацию прозрачности (альфа-канал). Этими частями являются:
8:4:4 Y’CbCr
Каждая из цветоразностных компонент Cb и Cr имеют одинаковую частоту дискретизации. Компонента яркости имеет в два раза большее разрешение. Эта система используется сканерами киноплёнки высокого уровня, устройствами телекино.
4:4:4 Y’CbCr
4:4:4 R’G’B’ (без субдискретизации)
Стоит отметить, что под «4:4:4» может пониматься цветовое пространство R’G’B’, которое вовсе не имеет цветовой субдискретизации. Видеоформаты, такие как HDCAM SR, могут записывать цифровой видеосигнал с частотой выборки 4:4:4 R’G’B’ посредством двухканального HD-SDI.
Используется в научных исследованиях, профессиональных системах и формате MPEG-2. Рекомендация 601 определяет стандарт полного цифрового видеосигнала с соотношением частот дискретизации яркостного и цветоразностных сигналов как 4:2:2. В каждой строке передается полный сигнал яркости, а для цветоразностных сигналов производится выборка каждого второго отсчета. Таким образом цветовое горизонтальное разрешение снижается вдвое.
Этот режим также определен технически. Используется в ограниченном наборе аппаратных и программных кодеров.
В соотношении 4:1:1, горизонтальное разрешение цветоразностных сигналов снижается до четверти от полного разрешения сигнала яркости, также пропускная способность уменьшается в два раза по сравнению с режимом без субдискретизации. Первоначально, 4:1:1 применялся в формате DV, который не считался вещательным и был единственным приемлемым форматом видеозаписи для низкобюджетных и потребительских приложений. В настоящее время, DV-формат (с выборкой 4:1:1) используется профессионально для производства новостей и воспроизведения видео при помощи серверов.
В системе NTSC, если частота дискретизации яркости равна 13,5 МГц, то это означает, что каждый из сигналов Cr и Cb будет дискретизован с частотой 3,375 МГц, что соответствует максимальной пропускной способности частоты Найквиста 1,6875 МГц, в то время как традиционный «NTSC кодер высокого класса аналогового вещания» будет иметь частоту Найквиста 1,5 МГц и 0,5 МГц для I/Q каналов. Однако в большинстве единиц оборудования, особенно в дешевых телевизорах и VHS / Betamax видеомагнитофонах, каналы цветности имеют пропускную способность только 0,5 МГц для Cr и Cb (что эквивалентно для I/Q). Таким образом, система фактически обеспечивает увеличенную пропускную способность цвета по сравнению с лучшими композитными аналоговыми спецификациями для NTSC, несмотря на то, что используется только 1/4 от полной полосы частот цветовой составляющей «полного» цифрового сигнала. Форматы, которые используют 4:1:1, включают в себя:
Различные варианты 4:2:0 конфигураций можно найти в:
Для цветоразностных компонентов Cb и Cr при дискретизации отбрасывается каждый второй отсчёт по горизонтали и по вертикали. Есть три варианта схем 4:2:0, имеющих различные горизонтальные и вертикальные размещения отсчётов:
Этот вид обработки данных особенно хорошо подходит для цветных систем PAL и SECAM. Большинство цифровых видео форматов PAL используют соответственно 4:2:0, за исключением DVCPRO25, который использует 4:1:1. Оба варианта 4:1:1 и 4:2:0 вдвое сокращают пропускную способность по сравнению с представлением без субдискретизации.
Поддерживается некоторыми кодеками, но используется не слишком широко. При этом соотношении коэффициентов используется половина вертикального и четверть горизонтального цветового разрешения, и лишь одна восьмая часть полосы пропускания максимальной цветового разрешения.
Терминология
Термин Y’UV относится к аналоговой схеме кодирования, в то время как Y’CbCr ссылается на цифровые схемы кодирования. Одно из различий между ними в том, что набор коэффициентов компонентов цветности U, V и Cb, Cr различен. Однако термин YUV часто используется ошибочно, обращаясь к кодировке Y’CbCr. Следовательно, выражения типа «4:2:2 YUV» всегда относятся к 4:2:2 Y’CbCr, так как просто нет такого понятия, как 4:x:x в аналоговой кодировке (например, YUV).
Также термином яркость и символом Y часто пользуются ошибочно, обращаясь к яркости, которая обозначается символом Y’. Обратите внимание, что яркость (Y’), принятая у видео инженеров отклоняется от яркости (Y) в колориметрии (как определено в CIE ). Яркость (в ТВ) формируется как взвешенная сумма компонентов RGB с гамма-коррекцией (трехцветной). Яркость формируется как взвешенная сумма линейных (трехцветной) компонентов RGB.
На практике, CIE символ Y часто неправильно используется для обозначения яркости. В 1993 году SMPTE принятое Руководство для инженеров EG 28, уточняет два термина. Обратите внимание, что главным символом ‘ используется, чтобы указать гамма-коррекцию.
Кроме того, понятие хрома/цветность у видео инженеров отличается от цветности в колориметрии. Хрома/цветность в видео-инженерной практике формируется из весовых компонентов трехцветной, нелинейных компонентов. Условия цветность и насыщенность часто используются как синонимы для обозначения цветности.
Видеоформаты
Следующая таблица показывает характеристики большинства видеоформатов и типов применяемой субдискретизации цветоразностных компонент, а также другие связанные с ними параметры, такие как скорость передачи данных и степень сжатия.
Субдискретизация насыщенности
Субдискретизация насыщенности
Субдискретизация насыщенности цвета (англ. Chroma subsampling ) является важным способом снижения скорости цифрового потока видеоданных (цифровое сжатие видеоинформации). Используется в системах аналогового и цифрового телевидения и алгоритмах сжатия JPEG.
На практике, кодирование изображений осуществляется уменьшением разрешения в канале насыщенности и увеличением разрешения в канале яркости.
Форматы субдискретизации
См. также
Литература
Полезное
Смотреть что такое «Субдискретизация насыщенности» в других словарях:
Цветовая субдискретизация — (англ. Chroma subsampling) технология кодирования изображений со снижением цветового разрешения, при которой частота выборки цветоразностных сигналов может быть меньше частоты выборки яркостного сигнала. Основана на особенности человеческого … Википедия
Видео — (от лат. video смотрю, вижу) электронная технология формирования, записи, обработки, передачи, хранения и воспроизведения сигналов изображения, основанная на принципах телевидения, а также аудиовизуальное произведение, записанное … Википедия
Акустика — У этого термина существуют и другие значения, см. Акустика (значения). Акустика (от греч. ἀκούω (акуо) слышу) наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием… … Википедия
Ниббл — Биты Значения 8 4 2 1 Шестандцате ричная цифра Десятичное число 0 0 0 0 0 0 1 1 1 1 0 2 2 1 3 3 … Википедия
Кодек — (англ. codec, от coder/decoder шифратор/дешифратор кодировщик/декодировщик или compressor/decompressor) устройство или программа, способная выполнять преобразование данных или сигнала. Кодеки могут как кодировать… … Википедия
Импульсно-кодовая модуляция — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Цветовая модель — Цветовая модель термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами. Вместе с методом интерпретации… … Википедия
Преобразование Фурье — Преобразование Фурье операция, сопоставляющая функции вещественной переменной другую функцию вещественной переменной. Эта новая функция описывает коэффициенты («амплитуды») при разложении исходной функции на элементарные составляющие … … Википедия
Сжатие данных — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (26 мая 2012) … Википедия
Битрейт — (англ. bit rate) буквально, скорость прохождения битов информации. Битрейт принято использовать при измерении эффективной скорости передачи информации по каналу, то есть скорости передачи «полезной информации» (помимо таковой, по… … Википедия
СОДЕРЖАНИЕ
Обоснование
Как работает подвыборка
Системы отбора проб и соотношения
Схема подвыборки обычно выражается в виде трехчастного отношения J : a : b (например, 4: 2: 2) или четырех частей, если присутствует альфа-канал (например, 4: 2: 2: 4), которые описывают количество выборки яркости и цветности в концептуальной области шириной J пикселей и высотой 2 пикселя. Части (в соответствующем порядке):
Это обозначение не действует для всех комбинаций и имеет исключения, например, 4: 1: 0 (где высота области составляет не 2 пикселя, а 4 пикселя, поэтому, если используется 8 бит на компонент, носитель будет 9 бит на пиксель) и 4: 2: 1.
4: 1: 1 | 4: 2: 0 | 4: 2: 2 | 4: 4: 4 | 4: 4: 0 | |||||||||||||||||||||
Y’CrCb | |||||||||||||||||||||||||
знак равно | знак равно | знак равно | знак равно | знак равно | |||||||||||||||||||||
Y ‘ | |||||||||||||||||||||||||
+ | + | + | + | + | |||||||||||||||||||||
1 | 2 | 3 | 4 | J = 4 | 1 | 2 | 3 | 4 | J = 4 | 1 | 2 | 3 | 4 | J = 4 | 1 | 2 | 3 | 4 | J = 4 | 1 | 2 | 3 | 4 | J = 4 | |
(Cr, Cb) | 1 | а = 1 | 1 | 2 | а = 2 | 1 | 2 | а = 2 | 1 | 2 | 3 | 4 | а = 4 | 1 | 2 | 3 | 4 | а = 4 | |||||||
1 | б = 1 | б = 0 | 1 | 2 | b = 2 | 1 | 2 | 3 | 4 | б = 4 | б = 0 | ||||||||||||||
¼ горизонтальное разрешение, полное вертикальное разрешение | ½ разрешения по горизонтали, ½ разрешения по вертикали | ½ разрешения по горизонтали, полное разрешение по вертикали | полное разрешение по горизонтали, полное разрешение по вертикали | полное горизонтальное разрешение, ½ вертикального разрешения |
Чтобы вычислить необходимый коэффициент пропускной способности относительно 4: 4: 4 (или 4: 4: 4: 4), необходимо просуммировать все факторы и разделить результат на 12 (или 16, если присутствует альфа).
Типы выборки и подвыборки
4: 4: 4
Каждый из трех компонентов Y’CbCr имеет одинаковую частоту дискретизации, поэтому субдискретизация цветности отсутствует. Эта схема иногда используется в высококачественных пленочных сканерах и в постпродакшне кинематографа.
4: 2: 2
Два компонента цветности дискретизируются с половиной горизонтальной частоты дискретизации яркости: горизонтальное разрешение цветности уменьшается вдвое. Это уменьшает полосу пропускания несжатого видеосигнала на одну треть.
Эта схема используется во многих высококачественных цифровых видеоформатах и интерфейсах:
4: 2: 1
4: 1: 1
В системе NTSC, если яркость дискретизируется на частоте 13,5 МГц, это означает, что каждый из сигналов Cr и Cb будет дискретизироваться на частоте 3,375 МГц, что соответствует максимальной полосе Найквиста 1,6875 МГц, тогда как традиционный «высококачественный аналоговый широковещательный» Кодер NTSC «будет иметь полосу Найквиста 1,5 МГц и 0,5 МГц для каналов I / Q. Однако в большинстве устройств, особенно в дешевых телевизорах и видеомагнитофонах VHS / Betamax, каналы цветности имеют полосу пропускания только 0,5 МГц для Cr и Cb (или эквивалентно для I / Q). Таким образом, система DV на самом деле обеспечивает превосходную цветовую полосу частот по сравнению с лучшими композитными аналоговыми характеристиками для NTSC, несмотря на то, что она имеет только 1/4 полосы цветности «полного» цифрового сигнала.
Форматы, в которых используется субдискретизация цветности 4: 1: 1, включают:
4: 2: 0
Различные варианты конфигураций цветности 4: 2: 0 находятся в:
Каждый Cb и Cr подвергаются подвыборке с коэффициентом 2 как по горизонтали, так и по вертикали.
Возможны три варианта схем 4: 2: 0 с разным расположением по горизонтали и вертикали.
Большинство цифровых видеоформатов, соответствующих PAL, используют субдискретизацию цветности 4: 2: 0, за исключением DVCPRO25, в котором используется субдискретизация цветности 4: 1: 1. Обе схемы 4: 1: 1 и 4: 2: 0 сокращают полосу пропускания вдвое по сравнению с отсутствием субдискретизации цветности.
Оригинал. На этом изображении показано одно поле. К движущемуся тексту применено размытие в движении.
4: 2: 0 чересстрочной выборки применяется к перемещению чересстрочного материала. На этом изображении показано одно поле.
Однако в чересстрочной схеме 4: 2: 0 вертикальное разрешение цветности уменьшается примерно вдвое, поскольку образцы цветности эффективно описывают область шириной 2 отсчета и высотой 4 отсчета вместо 2 × 2. Кроме того, пространственное смещение между обоими полями может привести к появлению гребенчатых артефактов цветности.
Исходное неподвижное изображение.
Если чересстрочный материал должен быть де-чересстрочным, гребенчатые артефакты цветности (из чересстрочной выборки 4: 2: 0) можно удалить, размывая цветность по вертикали.
4: 1: 0
Такое соотношение возможно, и некоторые кодеки его поддерживают, но широко не используется. Это соотношение использует половину вертикального и четверть горизонтального цветовых разрешений, при этом используется только одна восьмая пропускной способности максимального используемого цветового разрешения. Несжатое видео в этом формате с 8-битным квантованием использует 10 байтов для каждого макропикселя (что составляет 4 × 2 пикселя). Он имеет эквивалентную полосу цветности сигнала PAL I, декодированного с помощью декодера линии задержки, и все же намного превосходит NTSC.
3: 1: 1
В вертикальном измерении и яркость, и цветность дискретизируются с частотой дискретизации Full HD (1080 отсчетов по вертикали).
Цветовая субдискретизация
Цветовая субдискретизация (англ. Chroma subsampling ) — технология кодирования изображений со снижением цветового разрешения, при которой частота выборки цветоразностных сигналов может быть меньше частоты выборки яркостного сигнала. Основана на особенности человеческого зрения, выраженной большей чувствительностью к перепадам яркости, чем цвета. Цветовая субдискретизация является важным способом снижения размера цифрового потока видеоданных (цифровое сжатие видеоинформации). Используется в системах аналогового и цифрового телевидения, цифровой видеозаписи и алгоритмах сжатия изображений, таких как JPEG.
На практике кодирование изображений осуществляется уменьшением разрешения в цветоразностных каналах при сохранении разрешения в канале яркости.
Содержание
История
Метод был впервые разработан в 1950-х Альдой Бедфордом для системы цветного телевидения компании RCA. Позже он получил своё развитие в стандарте NTSC. Впрочем, принцип разделения яркости и информации о цвете был придуман ещё раньше — в 1938 году Джорджесом Валенси.
Введение
Y ′ = 0.299 ⋅ R ′ + 0.587 ⋅ G ′ + 0.114 ⋅ B ′ C R = 0.713 ⋅ ( R ′ − Y ′ ) C B = 0.564 ⋅ ( B ′ − Y ′ ) <\displaystyle <\begin
При передаче таких сигналов возможно восстановление исходных составляющих цветов: красной (R), синей (B) и зеленой (G), которые используются в большинстве систем отображения видеоинформации.
При Y’, Cr, Cb представлении видеосигнала цветоразностные компоненты Cr, Cb передаются с пространственным разрешением, в два раза меньшим разрешения по яркостному сигналу, при этом частота дискретизации для яркостного сигнала Y’ устанавливается равной 13,5 МГц, что в два раза больше, чем для цветоразностных сигналов Cr и Cb — 6,75 МГц. Для цифровых стандартов принято базовое значение частоты дискретизации, равное 3,375 МГц, таким образом, частоты дискретизации яркостного и двух цветоразностных сигналов будут находиться в соотношении 4:2:2.
Для сигналов ТВЧ, согласно части II Рекомендации ITU-R 709-3, установлены частоты дискретизации сигналов яркости 74,25 МГц и цветности 37,125 МГц.
Форматы субдискретизации
Структура дискретизации сигнала обозначается как соотношение между тремя частями X:a:b (например, 4:2:2), описывающими число выборок яркостных и цветоразностных сигналов. Также иногда используется обозначение с четырьмя частями (4:2:2:4), где четвёртая цифра, если она включена, должна быть идентична первой цифре, указывающая на наличие сигнала четвертого канала, содержащего информацию прозрачности (альфа-канал). Этими частями являются:
Стоит отметить, что под «4:4:4» может пониматься цветовое пространство R’G’B’, которое вовсе не имеет цветовой субдискретизации. Видеоформаты, такие как HDCAM SR, могут записывать цифровой видеосигнал с частотой выборки 4:4:4 R’G’B’ посредством двухканального HD-SDI.
Используется в научных исследованиях, профессиональных системах и формате MPEG-2. Рекомендация 601 определяет стандарт полного цифрового видеосигнала с соотношением частот дискретизации яркостного и цветоразностных сигналов как 4:2:2. В каждой строке передается полный сигнал яркости, а для цветоразностных сигналов производится выборка каждого второго отсчета. Таким образом, цветовое горизонтальное разрешение снижается вдвое.
Этот режим также определен технически. Используется в ограниченном наборе аппаратных и программных кодеров.
В соотношении 4:1:1 горизонтальное разрешение цветоразностных сигналов снижается до четверти от полного разрешения сигнала яркости, также полоса пропускания сужается (пропускная способность увеличивается) в два раза по сравнению с режимом без субдискретизации. Первоначально 4:1:1 применялся в формате DV, который не считался вещательным и был единственным приемлемым форматом видеозаписи для низкобюджетных и потребительских приложений. В настоящее время DV-формат (с выборкой 4:1:1) используется профессионально для производства новостей и воспроизведения видео при помощи серверов.
В системе NTSC, если частота дискретизации яркости равна 13,5 МГц, то это означает, что каждый из сигналов Cr и Cb будет дискретизован с частотой 3,375 МГц, что соответствует максимальной пропускной способности частоты Найквиста 1,6875 МГц, в то время как традиционный «NTSC кодер высокого класса аналогового вещания» будет иметь частоту Найквиста 1,5 МГц и 0,5 МГц для I/Q каналов. Однако в большинстве единиц оборудования, особенно в дешевых телевизорах и VHS-/Betamax-видеомагнитофонах, каналы цветности имеют пропускную способность только 0,5 МГц для Cr и Cb (что эквивалентно для I/Q). Таким образом, система фактически обеспечивает увеличенную пропускную способность цвета по сравнению с лучшими композитными аналоговыми спецификациями для NTSC, несмотря на то, что используется только 1/4 от полной полосы частот цветовой составляющей «полного» цифрового сигнала. Форматы, которые используют 4:1:1, включают в себя:
Различные варианты 4:2:0 конфигураций можно найти в:
Для цветоразностных компонентов Cb и Cr при дискретизации отбрасывается каждый второй отсчёт по горизонтали и по вертикали. Есть три варианта схем 4:2:0, имеющих различные горизонтальные и вертикальные размещения отсчётов:
Этот вид обработки данных особенно хорошо подходит для цветных систем PAL и SECAM. Большинство цифровых видео форматов PAL используют соответственно 4:2:0, за исключением DVCPRO25, который использует 4:1:1. Оба варианта 4:1:1 и 4:2:0 вдвое сокращают требования к пропускной способности по сравнению с представлением без субдискретизации.
Поддерживается некоторыми кодеками, но используется не слишком широко. При этом соотношении коэффициентов используется половина вертикального и четверть горизонтального цветового разрешения, и лишь одна восьмая часть от полосы пропускания максимального цветового разрешения.
Используется в формате видеозаписи высокой чёткости Sony HDCAM (не HDCAM SR). В горизонтальном направлении производится выборка отсчетов сигнала яркости на три четверти от полной частоты дискретизации HD — 1440 выборок в строке против 1920 в HDCAM SR. В вертикальном направлении, как в канале яркости, так и в канале цветности, производится полная дискретизация HD (1080 отсчетов).
Терминология
Термин Y’UV относится к аналоговой схеме кодирования, в то время как Y’CbCr ссылается на цифровые схемы кодирования. Одно из различий между ними в том, что набор коэффициентов компонентов цветности U, V и Cb, Cr различен. Однако термин YUV часто используется ошибочно при обращении к кодировке Y’CbCr. Следовательно, выражения типа «4:2:2 YUV» всегда относятся к «4:2:2 Y’CbCr», так как просто нет такого понятия, как 4:x:x в аналоговой кодировке, например, YUV.
Также термином яркость и символом Y часто пользуются ошибочно, обращаясь к яркости, которая обозначается символом Y’. Обратите внимание, что яркость (Y’), принятая у видео-инженеров, отклоняется от яркости (Y) в колориметрии (как определено в CIE). Яркость (в ТВ) формируется как взвешенная сумма компонентов RGB с гамма-коррекцией (трехцветной). Яркость формируется как взвешенная сумма линейных (трехцветной) компонентов RGB.
На практике CIE символ Y часто неправильно используется для обозначения яркости. В 1993 году SMPTE принятое Руководство для инженеров EG 28 уточняет два термина. Обратите внимание, что символ ‘ (штрих) используется, чтобы указать гамма-коррекцию.
Кроме того, понятие хрома/цветность у видеоинженеров отличается от цветности в колориметрии. Хрома/цветность в видеоинженерной практике формируется из весовых трехцветных нелинейных компонентов. Термины «цветность» и «насыщенность» часто используются как синонимы для обозначения цветности.
Видеоформаты
Следующая таблица показывает характеристики большинства видеоформатов и типов применяемой субдискретизации цветоразностных компонент, а также другие связанные с ними параметры, такие как скорость передачи данных и степень сжатия.