что значит знак суммы
Как легко понять знаки Σ и П с помощью программирования
Для тех, кто подзабыл матешу
Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.
Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.
Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.
Знак Σ — сумма
Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:
Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.
На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:
Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».
Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:
Произведение П
С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:
А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:
Что дальше
Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.
Сумма (математика)
Су́мма (лат. summa — итог, общее количество), результат сложения величин (чисел, функций, векторов, матриц и т. д. ). Общими для всех случаев являются свойства коммутативности, ассоциативности, а также дистрибутивности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:
В теории множеств суммой (или объединением) множеств называется множество, элементами которого являются все элементы слагаемых множеств, взятые без повторений.
Содержание
Определенная сумма
Это обозначение называют определённой (конечной) суммой по i от k до N.
Для удобства вместо иногда пишут
, где
— некоторое соотношение для
, таким образом
это конечная сумма всех
, где
Свойства определённой суммы
Примеры
3.
4.
5.
Неопределённая сумма
Неопределённой суммой по
называется такая функция
, обозначаемая
, что
.
Формула Ньютона-Лейбница
Если найдена неопределённая сумма , то
.
Этимология
Латинское слово summa переводится как «главный пункт», «сущность», «итог». С XV века слово начинает употребляться в современном смысле, появляется глагол «суммировать» (1489 год).
Это слово проникло во многие современные языки: сумма в русском, sum в английском, somme во французском.
Специальный символ для обозначения суммы (S) первым ввёл Эйлер в 1755 году. Как вариант, использовалась греческая буква Сигма Σ. Позднее ввиду связи понятий суммирования и интегрирования, S также использовали для обозначения операции интегрирования.
Литература
См. также
Полезное
Смотреть что такое «Сумма (математика)» в других словарях:
Сумма — Сумма: Сумма (математика) результат сложения. Сумма (перен., книжн.) (лат. summa) итог, общее количество. Примеры Денежная сумма. Сумма жанр научного или дидактического сочинения. Сумма российский холдинг. Сумма Ляхде … Википедия
Сумма ряда — Сумма числового ряда определяется как предел, к которому стремятся суммы первых n слагаемых ряда, когда n неограниченно растёт. Если такой предел существует и конечен, то говорят, что ряд сходится, в противном случае что он расходится[1].… … Википедия
МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… … Философская энциклопедия
Математика в Древнем Египте — Данная статья часть обзора История математики. Статья посвящена состоянию и развитию математики в Древнем Египте в период примерно с XXX по III век до н. э. Древнейшие древнеегипетские математические тексты относятся к началу II… … Википедия
Математика Древнего Востока — История науки По тематике Математика Естественные науки … Википедия
МАТЕМАТИКА — Математику обычно определяют, перечисляя названия некоторых из ее традиционных разделов. Прежде всего, это арифметика, которая занимается изучением чисел, отношений между ними и правил действий над числами. Факты арифметики допускают различные… … Энциклопедия Кольера
Математика — I. Определение предмета математики, связь с другими науками и техникой. Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира. «Чистая … Большая советская энциклопедия
Математика инков — Кипукамайок из книги Гуамана Пома де Айяла «Первая Новая Хроника и Доброе Правление». Слева у ног кипукамайока юпана, содержащая вычисления священного числа для песни «Сумак Ньюста» (в оригинале рукописи рисунок не цветной, а чёрно белый;… … Википедия
Сложение (математика) — У этого термина существуют и другие значения, см. Сложение (значения). Сложение (прибавление) одна из основных операций (действий) в разных разделах математики, позволяющая объединить два объекта (в простейшем случае два числа). Более … Википедия
Ряд (математика) — Сумма ряда, или бесконечная сумма, или ряд, математическое выражение, позволяющее записать бесконечное количество слагаемых и подразумевающее значение их суммы, которое можно получить в предельном смысле. Если значение суммы (в предельном смысле) … Википедия
Числовые и буквенные выражения
Числовые выражения: что это
Числовое выражение — это запись, которая состоит из чисел и знаков арифметического действия между ними.
Именно числовые выражения окружают нас повсюду — не только на уроках математики, но и в магазине, на кухне или когда мы считаем время. Простые примеры, в которых нужно вычислить разность, сумму, получить результат умножения или деления — это все числовые выражения.
Например:
Это простые числовые выражения.
Чтобы получить сложное числовое выражение, нужно к простому выражению присоединить знаком арифметического действия еще одно простое числовое выражение. Вот так:
Это сложные числовые выражения.
Знать, где простое выражение, а где сложное — нужно, но называть оба типа выражений следует просто «числовое выражение».
Число, которое мы получаем после выполнения всех арифметических действий в числовом выражении, называют значением этого выражения.
Вспомним, какие виды арифметических действий есть.
+ — знак сложения, найти сумму.
— — знак вычитания, найти разность.
* — знак умножения, найти произведение.
: — знак деления, найти частное.
11 — значение числового выражения.
6 * 8 = 48
48 — значение числового выражения.
При вычислении сложных числовых выражений нужно строго соблюдать очередность выполнения арифметических действий:
Пример 2. Найдите значение числового выражения: (6 + 7) * (13 + 2)
Часто бывает нужно сравнить два числовых выражения.
Сравнить числовые выражения — значит найти значения каждого выражения и сравнить их.
Пример 1. Сравните два числовых выражения: 6 + 8 и 2 * 2
14 больше 4
14 > 4
6 + 8 > 2 * 2
Буквенные выражения
Кажется, с числовыми выражениями все достаточно просто. Буквенные выражения немногим сложнее.
В буквенном выражение есть цифры, знаки арифметических действия и буквы.
Получается, что буквенное выражение — это числовое выражение, в котором есть не только числа, но и буквы.
Это буквенные выражения. Для записи буквенных выражений используют буквы латинского алфавита.
У буквенных выражений, как и у числовых, есть определенный алгоритм вычисления:
Пример 1. Найдите значение выражения: 5 + x.
Пример 2. Найдите значение выражения: (4 + a) * (2 + x).
Выражения с переменными
Переменная — это значение буквы в буквенном выражении.
Числа, которые подставляют вместо переменных — это значения переменных. В нашем примере это числа 5 и 10.
Число и переменная записаны без знака арифметического действия. Так коротко записывается умножение.
5x — это произведение числа 5 и переменной x
4a — это произведение числа 4 и переменной a
Числа 4 и 5 называют коэффициентами.
Коэффициент показывает, во сколько раз будет увеличена переменная.
Теперь вы вооружены всеми необходимыми теоретическими знаниями о числовых и буквенных выражениях. Давайте немного поупражняемся в решении задачек и примеров, чтобы научиться применять полученные знания на практике.
Задание раз.
Задание два.
Составьте буквенное выражение:
Сумма разности b и 345 и суммы 180 и x.
Ответ: роллы “Калифорния” и “Филадельфия” вместе стоят 1 000 рублей.
Задание пять.
Составьте выражение для решения задачи и найдите его значение.
Маша посмотрела за день 150 видео в ТикТок, а Лена — на 13 видео больше. Сколько всего видео было просмотрено обеими девочками?
150 + (150 + 13)
Выполняем сначала действие в скобках: 150 + 13 = 163.
150 + 163 = 313.
Ответ: Маша и Лена посмотрели всего 313 видео.
Математика, которая мне нравится
Математика для школьников и студентов, обучение и образование
3. Суммирование
Определение. Пусть дана последовательность чисел и натуральные числа
и
, причем
.
(сумма по
от
до
) — сумма всех членов последовательности, номера которых не меньше
и не больше
.
Замечание. Сумма, состоящая из одного слагаемого, считается равной этому слагаемому.
Пример. .
Пример.
Свойства знака
1. .
2. .
3. .
4. .
Пример. Вычислим .
Просуммируем левую и правую части по от
до
Слева получаем
Имеем
Задачи.
1. Найти
2.
3.
4.
5.
6. Найти сумму первых членов последовательности, если ее
-ый член
7. Найти (пятерок —
).
8. .
Комментариев: 28
1 Vasja_Vasja:
3/2 + 8/3 + 15/4 + 24/5 = (90 + 160 + 225 + 288)/60 = 763/60
Наверное у вас просто опечатка
2 Елизавета Александровна Калинина:
3 Вася Пупкин:
4 Вася Пупкин:
Это как раз таки понятно, я имел ввиду другое. Не понятно, почему Вы взяли именно куб суммы и как это связано с суммой k^2.
5 Елизавета Александровна Калинина:
Поняла. Это догадка. Логически не объяснить… Искусственный прием. Кто-то, даже не знаю кто, придумал.
6 Вася Пупкин:
Т.е. примеры из данной главы тоже решать основываясь на догадках и интуиции? Меня немного смутил способ, которым я решил первую задачу.
Перебирая всевозможные варианты, я заметил, что сумма последовательности k^3 равна сумме последовательности k, возведенной во вторую степень, т.е. (k(k+1)/2)^2 и доказал это методом мат. индукции.
7 Елизавета Александровна Калинина:
8 Вася Пупкин:
9 Александр:
второй вроде решается с помощью формулы для суммы членов геометрической прогрессии или есть другой способ?
10 Геннадий:
Добрый день!
Все-таки меня учили классически, и ноль для меня всегда целое число, а не натуральное.
Что касается суммы бесконечного числа нулей. Если это сумма вида , т.е. сумма счетного числа нулей, то она равна нулю. Если же мы рассматриваем неопределенность вида
, то здесь могут быть разные варианты.
Геннадий Reply:
Май 31st, 2014 at 18:21
Да, советские математики, а затем и российские не считают ноль натуральным числом. Для зарубежных – это не так. Например, французы Бурбаки определяют натуральные числа как мощности конечных множеств. Поэтому у них ноль (мощность пустого множества) тоже натуральное число.
Что касается суммы нулей, мне тоже хочется, чтобы сумма счетного числа нулей была равна нулю. Но посмотрите на эти преобразования:
Получаем неопределенность. И что с этим делать, понятия не имею.
Геннадий Reply:
Май 31st, 2014 at 18:27
Извините, в формуле между 1 и 0 не пропечатался знак умножения, а также многоточие. Может, такой знак сойдет за умножение: .
В пояснениях к набору формул в LaTex не нашел ни знака умножения, ни многоточия.
Ничего страшного. Спасибо, исправила.
Дело в том, что неопределенности можно раскрывать. И в Вашем примере она раскрывается как нуль, поскольку бесконечность – сумма счетного числа единиц.
Геннадий Reply:
Июнь 1st, 2014 at 10:22
Здравствуйте! Спасибо за корректировку моих текстов. Жаль, нет возможности это сделать самому, поскольку в громоздких формулах ошибки практически неизбежны. И не всегда администратор может их исправить, да и незачем нагружать его этим.
Относительно рассматриваемой суммы, конечно, бесконечность бесконечности рознь, и некоторые неопределенности можно раскрывать. Но ноль, все-таки, «он и в Африке ноль». И в данном случае меня «гложет сомнение». Смотрите, что получается:
В итоге мы раскрыли неразрешимую неопределенность. Где-то ошибка, или здесь первое равенство недопустимо, или сумма счетного числа нулей не равна нулю.
Если будет ошибка, пишите, я исправлю.
По поводу неопределенности. Она может быть раскрыта, если известно, какая неопределенность. У Вас с первым равенством все в порядке, второе равенство не всегда является равенством, только для рассматриваемого случая это так.
Геннадий Reply:
Июнь 2nd, 2014 at 0:16
Извините, но Вы меня совсем запутали. Разве равенство 0/0 = 0 может быть верно для какого-то особого случая? На мой взгляд, такое равенство либо всегда верно, либо всегда ложно. И справедливо, конечно, последнее.
Смотрите, — неопределенность. Я имею в виду, скажем, такие соотношения:
,
,
. Все это неопределенности вида
. Однако в первом случае предел равен
, во втором —
, а в третьем —
.
11 Геннадий:
Здравствуйте, Елизавета Александровна! Конечно, 0/0 – это неопределенность, и Ваши примеры с пределами доходчиво иллюстрируют роль бесконечно малых различных порядков. Мне хотелось проанализировать неопределенность 0/0 с помощью бесконечно малых и бесконечно больших констант, и здесь помогла статья на Вашем сайте http://hijos.ru/diskussionnyj-klub/analiz-myortv-da-zdravstvuet-analiz/.
Неопределенность 0/0 как деление двух бесконечно малых констант можно свести к сумме счетного числа нулей лишь в том случае, когда в числителе бесконечно малая такого же или большего порядка, чем в знаменателе. Если числитель и знаменатель – бесконечно малые первого порядка, то после преобразования
, заменив далее бесконечность на сумму счетного числа конечных величин и раскрыв скобки, мы в итоге получим бесконечную сумму нулей, а точнее счетное число бесконечно малых первого порядка. Такая сумма равна не нулю, а произвольному конечному числу. Это как разбить конечный отрезок любой длины на бесконечно большое число бесконечно малых частей, т.е. частей нулевой длины, а затем эти части (нули) обратно сложить.
Сумма счетного числа нулей равна нулю, если среди слагаемых нет счетного числа бесконечно малых первого порядка. К такой сумме можно преобразовать неопределенность 0/0, если числитель – бесконечно малая второго и большего порядка, а знаменатель – бесконечно малая первого порядка.
PS. Похоже (или я не прав?), в любой сумме слагаемых может быть конечное число или счетное, но никак не континуум. Знак “+” сам по себе играет роль разделителя суммируемых и, следовательно, подсчитываемых величин, число которых поэтому не более, чем счетно.
Добрый вечер! Если мы разобьем отрезок на части нулевой длины, то таких частей будет не счетное число. Вот тут, например, доказано, что множество вещественных чисел несчетно (теорема 2):http://sernam.ru/lect_math2.php?id=14
Геннадий Reply:
Июнь 6th, 2014 at 9:52
Здравствуйте, Елизавета Александровна! В прошлом моем комментарии ссылка с ошибкой, повторились кавычки. Если можно, уберите лишнюю кавычку в тексте атрибута href.
Конечно, множество вещественных чисел несчетно, а множество рациональных чисел счетно, но мы не об этом. Если разбивается конечный отрезок вещественной оси на бесконечно большое число бесконечно малых частей, это не значит, что отрезок расщепляется на отдельные точки (наверное, это и невозможно в силу непрерывности).
Процитирую отрывок из того же автора: «бесконечно малая никак и ничем по размеру не отличима от нуля, её размер никак не ощутим и не наблюдаем. Поэтому она точно равна нулю в смысле обычного равенства чисел. Но, тем не менее, бесконечно малая не совпадает с нулём тождественно и в этом смысле равна нулю лишь приближённо».
Мы работаем с бесконечной малой окрестностью конечного числа, в каждой такой окрестности число точек несчетно, но количество самих окрестностей уже счетно. Выделяя окрестности, мы уходим от непрерывности вещественных чисел, уходим от континуума.
12 Меня терзают смутные сомнения:
Нельзя-ли здесь воспользоваться функциональными уравнениями вида
выражению под знаком суммирования?
Рассмотрим приведенный выше пример
Соответствующее функциональное уравнение
Предположим, что решением будет полином 3-й степени.
Меня терзают смутные сомнения Reply:
Апрель 23rd, 2015 at 5:55
Елизавета Александровна, позвольте сформулировать вопрос по-другому:
Не существует-ли какого-либо стандартного подхода, приема, может-быть трюка, позволяющего решать функциональные уравнения именно этого вида
для большинства ?
Это значительно упростило-бы решение задач на суммирование последовательностей, включая приведенные на этой странице.