что такое гранулометрический состав породы
Гранулометрический состав
Гранулометри́ческий соста́в (механический состав, почвенная текстура) — относительное содержание в почве, горной породе или искусственной смеси частиц различных размеров независимо от их химического или минералогического состава. Гранулометрический состав является важным физическим параметром, от которого зависят многие аспекты существования и функционирования почвы, в том числе плодородие.
Гранулометрический состав [1] — содержание в почве механических элементов, объединенных по фракции.
Содержание
Фракции частиц при гранулометрическом анализе почв
В почвах и породах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями. Единой классификации частиц не существует.
Исторически первая классификация фракций предложена А. Аттербергом в 1912 и была основана на изучении физических свойств монофракциальных смесей. Их анализ показал резкие качественные различия, в частности, в липкости при достижении размеров 0,002, 0,02 и 0,2 мм.
Шкала Аттерберга легла в основу более новых зарубежных классификаций. В СССР и России была принята несколько иная классификация Н. А. Качинского.
Шкала Качинского | |
---|---|
Граничные значения, мм | Название фракции |
до 0,001 | Ил |
0,001—0,005 | Мелкая пыль |
0,005—0,01 | Средняя пыль |
0,01—0,05 | Крупная пыль |
0,05—0,25 | Тонкий песок |
0,25—0,5 | Средний песок |
0,5—1 | Крупный песок |
Вместе с этими в классификации Качинского выделяются фракции физического песка и физической глины, соответственно, крупнее и мельче 0,01 мм. 1—3 мм — фракция гравия, крупнее 3 мм — каменистая часть почвы.
Классификации почв по гранулометрическому составу
В настоящее время получили распространение два основных принципа построения классификаций:
Однозначного перехода от одной классификации к другой не существует, однако используя кумулятивную кривую выражения результатов гранулометрического состава можно назвать почву по обеим классификациям.
Влияние гранулометрического состава на свойства почв и пород
Гранулометрический состав определяет многие физические свойства и водно-воздушный режим почв, а также химические, физико-химические и биологические свойства.
Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые почвы могут иметь проблемы с воздухосодержанием, лёгкие — с водным режимом.
Разные фракции обычно представлены различными минералами. Так, в крупных преобладает кварц, в мелких — каолинит, монтмориллонит. По фракциям различается способность образовывать с гумусом органоминеральные соединения.
Методы определения (гранулометрия)
состава песчаных и супесчаных почв.Разделение материала на гранулометрические фракции производится при помощи стандартного набора сит с последующим взвешиванием выделенных фракций.
Способы выражения
При определении гранулометрического состава почв выявляется процентное содержание фракций механических элементов. Например, почва содержит 23,4% физической глины.
Влияние гранулометрического состава на продуктивность растений
Продуктивность растений на почвах различного гранулометрического состава может существенно различаться, что объясняется различием в свойствах почв. Оптимальный гранулометрический состав зависит от условий влагообеспеченности и технологии возделывания. В засушливых условиях низкий запас влаги в лёгких почвах (супесях и песках) и слабый капиллярный подъём приводят к существенному снижению урожайности. В условиях хорошего и избыточного увлажнения такие почвы лучше аэрируются и растения на них чувствуют себя лучше. Низкий запас элементов питания в лёгких почвах можно легко устранить при внесении удобрений, которые имеют высокую эффективность на таких почвах вследствие малой буферности.
См. также
Примечания
Полезное
Смотреть что такое «Гранулометрический состав» в других словарях:
Гранулометрический состав — (a. granulometric composition; н. Kornverteilung; ф. composition granulometrique, granulometrie; и. composicion granulometrica, granulometria) распределение зёрен (кусков) по крупности в массивах г. п., горной массе, почве или… … Геологическая энциклопедия
гранулометрический состав — Количественное распределение частиц пробы в зависимости от их размера, выражается в процентах массы, прошедшей или оставшейся на выбранных ситах, по отношению ко всей массе пробы. [ГОСТ Р 50724.3 94] Тематики ферросплавы … Справочник технического переводчика
гранулометрический состав — Содержание в горной породе или почве зерен разного размера, выраженное в процентах от массы или количества зерен исследованного образца … Словарь по географии
гранулометрический состав — 4.2.43 гранулометрический состав (particle size distribution): Распределение твердого топлива из бытовых отходов на фракции по размеру частиц. Источник: ГОСТ Р 54235 2010: Топливо твердое из бытовых отходов. Термины и определения оригинал … Словарь-справочник терминов нормативно-технической документации
гранулометрический состав — granuliometrinė sudėtis statusas T sritis Standartizacija ir metrologija apibrėžtis Procentinis skirtingų matmenų dalelių kiekis birioje medžiagoje. atitikmenys: angl. fractional composition; granulometric composition vok. Kornaufbau, m;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas
гранулометрический состав — granuliometrinė sudėtis statusas T sritis chemija apibrėžtis Procentinis skirtingų matmenų dalelių kiekis birioje medžiagoje. atitikmenys: angl. fractional composition; grading; granulometric composition rus. гранулометрический состав;… … Chemijos terminų aiškinamasis žodynas
гранулометрический состав — granuliometrinė sudėtis statusas T sritis fizika atitikmenys: angl. fractional composition; granulometric composition vok. Kornaufbau, m; Korngrößenverteilung, f; Kornzusammensetzung, f rus. гранулометрический состав, m; фракционный состав, m… … Fizikos terminų žodynas
гранулометрический состав — granuliometrinė sudėtis statusas Aprobuotas sritis statyba apibrėžtis Įvairių medžiagų (grunto, nešmenų, skaldos ir t. t.) įvairaus dydžio dalelių masių procentai tirtame bandinyje, prilyginant jo masę 100%. atitikmenys: angl. grading; grain size … Lithuanian dictionary (lietuvių žodynas)
Гранулометрический состав — ситовой состав, зерновой состав количественное распределение частиц в пробе в зависимости от размера, выраженное в % по массе продукта, прошедшего через сито (набор сит) или оставшегося на каждом сите (наборе сит) … Энциклопедический словарь по металлургии
ГРАНУЛОМЕТРИЧЕСКИЙ СОСТАВ — ситовой состав, зерновой состав количественное распределение частиц в пробе в зависимости от размера, выраженного в % по массе продукта, прошедшего через сито (набор сит) или оставшегося на каждом сите (наборе сит) … Металлургический словарь
Гранулометрический состав
Гранулометрическим составом почв и пород называется относительное содержание в почве механических элементов или фракций.
Механические элементы почвы (элементарные почвенные частицы) — это обособленные осколки горных пород, минералов, кристаллов, а также аморфных соединений, все элементы которых находятся в химической взаимосвязи. Частицы, близкие по размерам, объединяют во фракции. Различают следующие типы механических элементов: минеральные, органические и органоминеральные.
Сумму всех механических элементов почвы размером меньше 0,01 мм называют физической глиной, а больше 0,01 мм – физическим песком, кроме того, выделяют мелкозем, в который входят частицы менее 1 мм, и почвенный скелет – частицы больше 1 мм (Классификация механических элементов по размеру).
Наименование ЭПЧ | Диаметр ЭПЧ, мм | Группы ЭПЧ | ||||||
---|---|---|---|---|---|---|---|---|
Камни | >3 | Крупнозём (скелет почвы, хрящ) | ||||||
Гравий | 3—1 | |||||||
Песок | крупный | 1—0,5 | Физический песок >0,01 мм | Мелкозем | ||||
средний | 0,5—0,25 | |||||||
мелкий | 0,25—0,05 | |||||||
Пыль | крупная | 0,05—0,01 | ||||||
средняя | 0,01—0,005 | Физическая глина Классификация почв и пород по гранулометрическому составу (по Н.А. Качинскому)Краткое название по гранулометрическому составу | Содержание физической глины | ( 80 >85 | >65 | |
По этой классификации основное наименование по гранулометрическому составу производится по содержанию физического песка и физической глины и дополнительное – с учетом других преобладающих фракций. Например, дерново-подзолистая почва содержит (в процентах): физической глины 28,1, песка 37,0, крупной пыли 34,9, средней и мелкой пыли 16, ила 12,1. Основное наименование гранулометрического состава этой почвы – легкосуглинистая, дополнительное – крупнопылевато-песчаная. Дополнительное, уточняющее, название, как видим из примера, дается по двум преобладающим фракциям, из которых главной по величине является та, что стоит в определении на последнем месте.
Классификация составлена с учетом генетической природы почв, способности их глинистой фракции к агрегированию, что зависит от содержания гумуса, состава обменных катионов, минералогического состава. Чем выше эта способность, тем слабее проявляются глинистые свойства при равном содержании физической глины. Поэтому степные почвы, красноземы и желтоземы, как более структурные, переходят в категорию более тяжелых почв при большем содержании физической глины, чем солонцы и почвы подзолистого типа.
Гранулометрический состав пород
Покрепин Б.В.
РАЗРАБОТКА НЕФТЯНЫХ И ГАЗОВЫХ МЕСТОРОЖДЕНИЙ
Тема 1.
Физические свойства горных пород-коллекторов нефти и газа.
Природные коллекторы нефти и газа.
Терригенные коллекторы.Породы-коллекторы терригенного типа состоят из зерен минералов и обломков пород разных размеров, сцементированных цементами различного типа. Обычно эти породы представлены в разной мере сцементированными песчаниками, алевролитами, а также в виде смеси их с глинами и аргиллитами. Для характеристики терригенных коллекторов большое значение имеет их минералогический и гранулометрический составы.
Карбонатные коллекторы.Породы-коллекторы карбонатного типа слагаются в основном известняками и доломитами.
Коллекторские свойства горных пород в первую очередь обусловливаются наличием в них пустот (пор, трещин и каверн). Поры — это пустоты, образованные межзерновыми пространствами и представляющие собой сложные капиллярные системы. Трещины — пустоты, образовавшиеся в результат разрушения сплошности породы, как правилопод действием механических напряжений, и характеризующиеся несоизмеримостью одного линейного размера по отношению остальным. Каверны — пустоты значительного размера, образовавшиеся в результате выщелачивания горной породы. В отличие от пор в кавернах гравитационные силы преобладают над капиллярными. Обычно к кавернам относят пустоты с линейными размерами более 1 3 мм. Поровыми коллекторами сложены многочисленные месторождения нефти и газа земного шара. Кавернозного типа коллектор, как и чисто трещинного, встречается значительно реже. Чаще коллекторы бывают смешанного типа, особенно трещинно-порового. Коллектор порового и трещинно-порового типов, как правило, связан с терригенными породами В них содержится около 60% мировых запасов нефти и 76% запасов газа. Коллектор трещинного и кавернового типов характерны для карбонатных пород. В терригенных и карбонатных породах содержится 99% мировых запасов нефти и газа. Вместе с тем карбонатные отложения из-за высокой продуктивности обеспечивают около 60% мировой добычи нефти. В России основные коллекторы нефти и газа — терригенные породы. В то же время эксплуатируется и более 200 месторождений с карбонатными коллекторами. Удельный вес запасов нефти в карбонатных коллекторах и ее добычи из них постоянно возрастает. Коллекторские свойства пород нефтяного и газового пласта характеризуются следующими показателями:
1) гранулометрическим составом пород;
4) капиллярными свойствами;
5) удельной поверхностью;
6) механическими свойствами;
7) насыщенностью пород водой, нефтью и газом.
Гранулометрический состав пород.
Гранулометрический анализ проводится для определения степени дисперсности минеральных частиц, слагающих породу. Гранулометрическим (механическим) составом породы называют количественное, как правило, массовое содержание в породе частиц различной крупности. Им в значительной степени определяются многие свойства породы: пористость, проницаемость, удельная поверхность, капиллярные свойства и т. п. По механическому составу можно судить о геологических условиях отложения пород залежи. Так как размеры частиц породы обуславливают общую их поверхность, контактирующую с нефтью, от гранулометрического состава пород зависит количество нефти, остающейся в пласте после окончания его разработки в виде пленок, покрывающих поверхность зерен, и в виде капиллярно удержанной нефти.
В процессе эксплуатации скважин на основании гранулометрического состава подбирают фильтры, предотвращающие вынос песка из пласта в скважину.
Гранулометрический состав горной породы определяют ситовым и седиментационным анализами, ситовый анализ применяется для фрационирования частиц размером более 0,05 мм. Содержание частиц меньшего размера находят седиментационным анализом.
Для проведения ситового анализа проэксграгированный от остаточной нефти и высушенный образец породы массой 40— 50 г дробят на кусочки, не разрушая отдельных зерен, и обрабатывают 10%-ным раствором соляной кислоты для удаления карбонатов. После этого образец растирают пробкой в форфоровой чашке с одновременной промывкой водой для удаления глинистой фракции. Отмытую породу высушивают, взвешивают и просеивают через набор сит в течение 15 мин. Оставшиеся на каждом сите фракции взвешивают и результаты записывают в таблицу. Суммарная масса фракций должна совпадать с начальной массой отмытой высушенной породы.
Седиментационный анализ основывается на зависимости скорости падения частицы в вязкой жидкости от размера частицы. Определение скорости свободного падения частиц породы в жидкости производится по формуле Стокса для частиц сферической формы:
(1.1)
где — скорость осаждения частиц в жидкости; g — ускорение свободного падения; d — диаметр частиц;
— кинематическая вязкость жидкости;
— плотность жидкости;
— плотность частиц породы.
Считается, что формула Стокса справедлива для частиц диаметром 0,1 — 0,001 мм. На скорость осаждения частиц меньшего размера ощутимое влияние оказывают броуновское движение и слои адсорбированной на поверхности частиц жидкости, не учитываемые в формуле (1.1).
Наиболее распространенные методы седиментационного анализа
— пипеточный метод, метод отмучивания потоком воды и метод
взвешивания осадка.
Результаты гранулометрического анализа представляют в виде таблиц, гистограмм и графиков, иллюстрирующих связь между диаметром частиц и их массовых долей в породе.
Графически гранулометрический состав можно представить в виде интегральной кривой распределения (рис. 1.1) или графика плотности распределения частиц по размерам (рис. 1.2). Точки интегральной кривой распределения получают, отмечая, как правило, в полулогарифмических координатах диаметр и суммарную массовую Долю частиц, начиная от нуля и кончая данным диаметром.
|
Рис.1.1 Кривая суммарного гранулометрическтго состава зерен породы
|
Рис. 1.2. Крсвая распределения зерен породы по размерам (1) и гистограмм (2)
По интегральной кривой распределения судят о неоднородности пород по размерам слагающих ее зерен. Количественно она характеризуется отношением d60/d10, где d60, dI0 — диаметры, для которых суммарная доля частиц с диаметрами от нуля до данного диаметра, составляют соответственно 60 и 10% (точки 2 и 5 на рис. 1.2). Для нефтяных месторождений эта величина обычно изменяется от 1,1 до 20. По диаметру, соответствующему суммарной массовой доле 90% (точка 1 на рис. 1.1), подбирают забойные противопесчаные фильтры с определенными размерами отверстий.
Пористость горных пород.
Под пористостью горных пород понимают наличие в породе пустот (пор), незаполненных твердым веществом. Пористость — показатель, широко используемый для характеристики коллекторских свойств пласта и определения запасов нефти и газа в залежи.
Количественно пористость характеризуется коэффициентами полной и открытой пористости.
Коэффициентом полной (абсолютной) пористости тn называют отношение объема всех пор Vпор образца к видимому его объему Vo6р:
Коэффициентом открытой пористости т0 принято называть отношение объема открытых, сообщающихся между собой пор, к
видимому объему образца. Коэффициенты пористости измеряются долях единицы. Их можно выражать в процентах от объема ороды. Для песков значения полной и открытой пористости практически совпадают. В песчаниках и алевролитах полная пористость может на 5 — 6% превышать открытую. Наибольший объем закрытых пустот характерен для известняков и туфов.
Пористость зависит от гранулометрического состава горной породы, его неоднородности, степени сцементированности частиц. Если бы порода состояла из одинаковых шарообразных частиц, то ее пористость не зависела бы от их диаметра, а определялась только их расположением относительно друг друга. Модель такого грунта, состоящего из шарообразных частиц одинакового диаметра, называют фиктивным грунтом. Эта модель широко используется для изучения связи физических характеристик пористых сред между собой. Для фиктивного грунта при наиболее плотной упаковке частиц пористость составляет 25,9%, а при наименее плотной — 47,6%. Пористость реальных коллекторов нефти и газа редко превышает 30%, а в большинстве случаев составляет 12 — 25%.
Для характеристики коллекторских свойств пласта недостаточно одной пористости, они также связаны с размером поровых каналов. По величине поровые каналы нефтяных и газовых коллекторов условно подразделяют на три группы, сверхкапиллярные— диаметром 2 — 0,5 мм; капиллярные — 0,5 — 0,0002 мм; субкапиллярные — менее 0,0002 мм.
В крупных (сверхкапиллярных) порах движению жидкости и газа препятствуют только силы трения, в капиллярных порах значительно проявляются также капиллярные силы, а в субкапиллярных порах из-за действия капиллярных сил движение жидкости в природных условиях практически невозможно. Поэтому горные породы, хотя и обладающие значительной пористостью, но имеющие поры преимущественно субкапиллярного характера (глины, глинистые сланцы и другие) относят, как правило, к неколлекторам.
С увеличением глубины залегания пород пористость обычно уменьшается в связи с их уплотнением под давлением вышележащих пород. Наиболее неравномерная пористость у карбонатных пород, которые наряду с крупными трещинами и кавернами имеют плотные блоки, практически лишенные пор.
Коэффициент пористости определяют по кернам, извлеченным из скважины при ее бурении, и в лабораторных условиях различными методами. Пористость в лабораторных условиях определяют по объему образца и объему пор в нем. Коэффициент полной пористости вычисляют, используя кажущуюся плотность породы и плотность слагающих ее минералов, по следующей формуле:
(1.3)
Проницаемость горных пород.
Проницаемостью горных пород называют их способность пропускать жидкость или газ под действием перепада давления. Почти все без исключения осадочные породы обладают проницаемостью. Однако такие породы, как глины, доломиты, некоторые известняки, несмотря на сравнительно большую пористость имеют заметную проницаемость только для газа. Это объясняется малым размером пор, преимущественно субкапиллярного характера, в которых даже движение газа при реально существующих в пластах перепадах давления затруднено. Кроме пористости и размера пор на проницаемость горной породы влияют также свойства фильтрующейся жидкости и условия фильтрации. Так проницаемость породы для жидкостей, содержащих активные компоненты, которые способны взаимодействовать с пористой средой, будет существенно отличаться от проницаемости той же породы для жидкостей и газов, нейтральных по отношению к ней. При содержании в пористой среде двух и более фаз (нефти, газа, воды) одновременно проницаемость различна для каждой из фаз, более того, зависит от доли объема пор, занимаемой фазами, и от взаимодействия самих фаз. Это привело к необходимости введения понятий абсолютной, фазовой и относительной проницаемостей.
|
Рис. 1.3. Графики зависимости относительной проницаемости песка для воды и нефти от водонасыщенности
Под абсолютной проницаемостью принято понимать проницаемость горной породы, которая определена по жидкостям или газам, полностью насыщающим пустотное пространство породы и химически инертным по отношению к ней. Абсолютная проницаемость характеризует только свойства самой породы и не должна зависеть от физико-химических свойств фильтрующейся жидкости или газа и от условий фильтрации.
Фазовой (эффективной) проницаемостью называют проницаемость горной породы для одной фазы при наличии или движении в поровом пространстве породы многофазной системы, фазовая проницаемость зависит не только от свойств породы, но и от условий фильтрации, в основном от насыщенности порового пространства той или иной фазой и от характера межмолекулярного взаимодействия на границах раздела между фазами и на поверхности пор.
На рис. 1.3 приведены экспериментальные зависимости относительной проницаемости песка для воды (kв) и нефти (kн) от водонасыщенности пористого пространства. Как видно из рисунка, при водонасыщенности более 20 % фазовая проницаемость породы для нефти резко снижается, хотя и получаем еще безводную нефть в пределах пластовых градиентов давлений. Это объясняется тем, что за счет молекулярно-поверхностных сил вода удерживается в мелких порах и на поверхности зерен песка в виде тонких пленок, тем самым уменьшая площадь сечения фильтрационных каналов. При достижении водонасыщенности 80 % фильтрация нефти прекращается, хотя еще в пласте имеется нефть. Поэтому нельзя допускать преждевременного обводнения скважин, необходимо предупреждать попадание воды в призабойную зону при вскрытии пласта, при проведении ремонтных работ.
Проницаемость горных пород характеризуется коэффициентом проницаемости, который определяется из формулы линейного закона фильтрации Дарси. По этому закону скорость фильтрации жидкости в пористой среде прямо пропорциональна перепаду давления и обратно пропорционально вязкости:
(1.4)
где — скорость линейной фильтрации; k — коэффициент пропорциональности, который называется коэффициентом проницаемости;
— динамическая вязкость жидкости;
— перепад давления между двумя точками в образце на расстоянии L по направлению движения жидкости.
Подставляя значения v = Q/F в формулу (1.4) и решая относительно k, получим
(1.5)
где Q — объемный расход жидкости через породу; F — площадь поперечного сечения образца.
По формуле (1.5) определяют коэффициент проницаемости пород в лабораторных условиях.
(1.6)
Закон Дарси используется для определения как абсолютной, так и фазовой проницаемости горных пород. Он справедлив в широком диапазоне условий и нарушается лишь при высоких скоростях фильтрации.