что такое гомеостатическая функция крови

Что такое гомеостатическая функция крови

Цель урока: знать морфологию, функции, физико-химические свойства крови, ее составные части.

Знать физиологические механизмы гемолиза, СОЭ.

Уметь различать группы крови, понимать сущность резус-фактора и резус-конфликта.

План изложения нового материала

1. Внутренняя среда организма

6. Тромбоциты, гемостаз

Внутренняя среда организма

При изменении какого-либо фактора внутренней среды в организме включаются системы регуляции, которые обеспечивают работу органов и систем, направленную на восстановление постоянных физиологических и биохимических показателей. Такая совокупность механизмов, обеспечивающих поддержание постоянства внутренней среды организма, называется гомеостазом.

Кровь выполняет важные функции:

1)дыхательная — перенос кислорода от легких к тканям и углекислого газа в обратном направлении;

2)питательная — транспорт питательных веществ к клеткам организма;

6)защитная — обеспечение иммунных реакций против инфекционных агентов и токсинов;

7)гомеостатическая — поддержание постоянства внутренней среды организма.

Плазма — жидкая часть крови.

белки 65-85 г в 1 л 7-8 %

Все белки крови синтезируются в печени, поэтому заболевания печени сопровождаются нарушением ряда функций крови. Функции белков :

2)защитную — иммуноглобулины отвечают за гуморальный иммунитет;

3)транспортную — альбумины переносят многие вещества крови (витамины, гормоны, пигменты )

4)поддержание онкотического давления — альбумины обладают способностью удерживать воду, препятствуя ее чрезмерному попаданию в ткани.

Органы и ткани нуждаются в питательных веществах углеводах и липидах.

Форменные элементы крови. Гемопоэз.

Лейкоциты выполняют функции :

-защитная (уничтожают чужеродные тела)

-вырабатывают антитела, обеспечивая иммунитет

-участвуют в свертывании крови и фибринолиза, вырабатывая гепарин и гистамин

-обеспечивают отторжение трансплантанта

Лейкоциты делятся на : зернистые (гранулоциты) и незернистые (агранулоциты).

Гранулоциты имеют зернистость в цитоплазме и делятся на :

-нейтрофилы (нейтрофильные лейкоциты),

— эозинофилы (эозинофильные лейкоциты),

-базофилы (базофильные лейкоциты).

Нейтрофилы сегментоядерные выполняют функцию фагоцитоза микроорганизмов и инородных веществ за счет специальных ферментов, которые разрушают оболочку микроорганизмов. Нейтрофилы составляют 55 — 70 % всех лейкоцитов. Большую часть их общего количества составляют зрелые формы, имеющие сегментированное ядро (сегментоядерные). Примерно 2 —5 % лейкоцитов составляют молодые формы, называемые палочкоядерными нейтрофилами.

Базофилы (до 1 % всех лейкоцитов) принимают участие в развитии аллергических реакций, обеспечивают миграцию других лейкоцитов в ткани за счет активных веществ гепарина и гистамина, которые освобождаются по мере необходимости.

Эозинофилы (2 —5 %) ограничивают выраженность аллергических реакций. Их действие противоположно функциям базофилов: они фагоцитируют биологически активные вещества и аллергены.

К незернистым лейкоцитам относят моноциты и лимфоциты

Источник

Что такое гомеостатическая функция крови

что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови

Существуют разные представления о гомеостазе [5]. Чаще всего гомеостаз определяют как подвижное равновесие или колеблющееся в ограниченных пределах постоянство внутренней среды организма, в т.ч. тканевой (внеклеточной) жидкости, крови и лимфы. Или иначе: гомеостаз – это совокупность скоординированных реакций, обеспечивающих поддержание или восстановление постоянства внутренней среды организма, который есть физико-химическая система, существующая в окружающей среде в стационарном состоянии. Именно способность биосистем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Поэтому гомеостаз определяют также как способность биосистем противостоять изменениям и сохранять динамическое постоянство состава и свойств организма, а здоровье человека рассматривают как выражение биологического гомеостаза, оптимальное протекание физиологических процессов. Таким образом, к определению понятия гомеостаза подходят с двух сторон. С одной стороны, гомеостаз рассматривается как количественное и качественное постоянство физико-химических и биологических параметров. С другой стороны, гомеостаз определяют как совокупность механизмов, поддерживающих постоянство внутренней среды организма.

Лимфатическая система (ЛтСи) и водный гомеостаз индивида

Разные системы по своему участвуют в обеспечении гомеостаза. Сердечно-сосудистая система организует постоянную циркуляцию крови по замкнутой системе сосудов, по двум кругам кровообращения, начинающимся и оканчивающимся в сердце. Кровь приносит в органы субстраты, которые требуются для нормального функционирования их клеток, и эвакуирует продукты их жизнедеятельности. Эти вещества выходят через стенки капилляров в интерстициальную (межклеточную) жидкость. ЛтСи – дополнительная к венам дренажная система, в которую возвращается жидкость из тканей и в виде лимфы оттекает в кровеносное русло, в его венозную часть [4], что подтверждается и в экспериментах [1,2]. Дренажная функция ЛтСи определяется не столько сбросом конкретного количества жидкости, сколько «очищением» жидких сред от естественных и патологических макромолекул. ЛтСи всегда, а при патологии особенно, вовлечена в этот процесс [3]. В силу этого лимфа осуществляет вынос из очагов поражения разных антигенов – макромолекул распада тканей, патогенных микроорганизмов, токсинов, а следовательно вовлекается в иммунный процесс. В отличие от венозных капилляров, лимфатические капилляры создают путь, по которому не только вода и электролиты, но и такие крупные молекулы, как белки, возвращаются из интерстиция в циркулирующую кровь и так предотвращают повышение интерстициального давления, а значит, и отек [16]. Таким образом, ЛтСи не только регулирует водный гомеостаз, но и «указывает» направление движения жидкости и крупнодисперсных частиц в локальном межклеточном пространстве, создает вектор адекватной однонаправленной дегидратации.

ЛтСи с момента закладки является частью сердечно-сосудистой системы. Первичные лимфатические сосуды (ЛС) образуются путем выключения из кровотока части первичных вен [8], они всегда сопровождают артерии эмбриона. Я предложил концепцию о конституции или общем устройстве ЛтСи [13], которое определяет ее реакции на воздействия окружения, в т.ч. на толчки лимфотока, и состоит в сегментарной организации лимфатического русла (ЛР): 1) складчатая конструкция стенок (клапаны и собственные, межклапанные сегменты), связанная с колебаниями лимфотока; 2) квазисегментарная связь с артериями (генеральные, т.е. общие с кровеносным руслом, периартериальные сегменты) как следствие сегментарного устройства эмбриона и отражение внешних связей ЛР с его окружением, источником экстравазальных факторов лимфотока. Межклапанные сегменты ЛР во всем их разнообразии организуют базовое, пассивное и дополнительно активное продвижение лимфы от органов к венам. Строение и режим функционирования межклапанных сегментов ЛР коррелируют с их топографией – адекватны строению генеральных сегментов ЛтСи как части сердечно-сосудистой системы и корпоральных сегментов индивида. Собственные сегменты ЛтСи соединяются с другими компонентами генеральных сегментов посредством соединительной ткани, местами она трансформируется в лимфоидную ткань, в т.ч. лимфатических узлов (ЛУ), которые являются частью непрерывного ЛР (рис. 1–5).

что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови

Рис. 1. Строение циркуляторной системы у млекопитающих животных (схема): С – сердце; А – артерии; ГЛМЦР – гемолимфомикро-циркуляторное русло; В – вены; ЛС – лимфатические сосуды; ЛУ – лимфатические узлы; ТК – тканевые каналы

что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови

Рис. 2. Общая организация путей циркуляции у млекопитающих животных (схема)

что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови

Рис. 3. Сопряжение лимфатической и лимфоидной систем млекопитающего в составе единой циркуляторной системы организма. На схеме (верхняя часть) показаны пути лимфооттока, начиная с лимфообразования, и пути циркуляции лимфоцитов. Лимфоидная система выглядит как специальная приставка сердечно-сосудистой системы (нижняя часть схемы): С – сердце; ЛО – лимфоидные образования, устроенные как специальные насадки на кровеносное русло в виде лимфоидных муфт, которые контролируют и регулируют клеточный и белковый состав внутренней среды организма. В основе лимфоидной системы, таким образом, находятся замкнутые в круг непрерывные кровеносные пути, по которым происходит (ре)циркуляция лимфоцитов. Тканевые каналы и лимфатические пути дополняют кровеносные пути в составе единой циркуляторной системы организма

что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови

Рис. 4. Строение экстраорганного лимфатического русла как сети лимфангионов (схема): ЛУ – лимфатический узел как емкостный лимфангион лимфоидного типа; АЛС, ЭЛС – афферентные и эфферентные лимфатические сосуды как цепи обычных лимфангионов

что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови

Рис. 5. Противоточная лимфогемодинамическая система как модель иммунопоэза и иммуноморфогенеза (схема): ЛС, КС – лимфатический и кровеносный сосуды; СТ, ЛТ – (рыхлая) соединительная и лимфоидная ткани

Лимфоидная система (ЛдСи) и генотипический гомеостаз индивида

Один из параметров гомеостаза индивида – иммунный: устойчивость внутренней среды к антигенам связывают с ЛдСи. Иммунитет обеспечивается клеточными и гуморальными факторами крови, лимфы и тканевой жидкости [10,12]. Проблемы иммунитета занимают центральное положение в современной медицине. Исследования в этой области обычно проводятся на уровне клеток и их взаимодействий. Основная роль в установлении гомеостаза отводится клеточным мембранным системам, которые регулируют скорость поступления и выделения веществ клетками. С этих позиций основными причинами нарушения гомеостаза считаются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования [5,7].

Гораздо меньше и реже уделяется внимание анатомическим основам иммунитета. Длительное время роль его организатора приписывалась ЛтСи [4]. Во второй половине минувшего столетия интерес к иммунитету резко возрос во всех отраслях медицины. Поэтому в Международной анатомической терминологии (1998) выделена новая система –ЛдСи, термин «ЛтСи» исключен, роль ЛС низводится до уровня придатка ЛУ – поставщика периферической лимфы для очистки [17,18]. Недавно сделана попытка реанимировать ЛтСи в неузком виде: вслед за М.Г.Привесом, в ее состав ввели тимус, селезенку, миндалины, лимфоидные бляшки и узелки на основании их якобы морфологической, онтогенетической и функциональной взаимосвязи [6]. Из лимфоидной ткани состоят многие органы, сходные по значению с ЛУ, но с менее интимным отношением к ЛР (в отличие от ЛУ, не стоят на пути крупных ЛС – Иосифов Г.М., 1914) и с иным происхождением [11]. Функциональная морфология ЛдСи в условиях возрастной нормы, эксперимента и при патологии вызывает интерес у разных специалистов [6,7,19]. Но до сих пор отсутствует общепринятая концепция функционирования лимфоидных органов. Мной предложена модель противоточной лимфогемодинамической системы: по афферентным ЛС и синусам в паренхиму ЛУ поступают антигены, им навстречу движутся клетки крови (лимфоциты и макрофаги) из кровеносных микрососудов; центральное положение занимают интерстициальные каналы стромы, где развертываются процессы иммунопоэза. Тканевые каналы объединяют ЛР и кровеносное русло ЛУ в функциональный анастомоз. По тканевым каналам вещества ЛУ происходит трансфузионный лимфоток. Они же являются путями экстравазального перемещения клеток крови. В вещество других лимфоидных органов антигены могут приходить по тканевым каналам и специальным кровеносным микрососудам [9–15].

Лимфоидно-лимфатический аппарат и гомеостаз индивида

Я не рассматриваю ЛтСи как часть ЛдСи или ЛдСи в составе ЛтСи. Это два специализированных отдела сердечно-сосудистой системы, взаимосвязанных на периферии (лимфоидные узелки и бляшки, ЛУ). В основе ЛдСи находятся кровеносные сосуды [9,10], главные пути (ре)циркуляции лимфоидных клеток, а в основе ЛтСи – ЛС, дополнительный к венам дренаж разных органов, важный путь оттока из них антигенов. ЛдСи и ЛтСи образуют иммунный комплекс благодаря рыхлой соединительной ткани между кровеносными микрососудами и микроЛС, которая является не просто их механической скрепкой, но циркуляторным посредником: в тканевых каналах встречаются противотоки антигенов и клеток крови, в результате чего развертываются процессы иммунопоэза и образуется лимфоидная ткань [9–15]. Лимфоидно-лимфатический аппарат поддерживает гомеостаз организма следующим образом: 1) ЛтСи осуществляет отток тканевой жидкости из органов в виде лимфы, обеспечивая относительное постоянство тканевого давления и состава межклеточной среды, поскольку в первую очередь ЛР отводит из тканей крупнодисперсные вещества, белки и жиры, токсины и опухолевые клетки, что способствует поддержанию специфического белкового и клеточного состава внутренней среды организма (генотипического гомеостаза); 2) ЛдСи организует (ре)циркуляцию лимфоидных клеток (а также антител), которые обеспечивают поддержание генотипического гомеостаза.

Лимфоидно-лимфатический аппарат – это анатомическая основа иммунопротективной системы (ИПС), многоуровневой функциональной системы, в т.ч. соединительных и пограничных тканей, которая мобилизует различные факторы иммунной защиты внутренней среды организма [9–14]. ЛтСи и кровеносная система участвуют в организации ИПС, т.к. лимфоидные образования используют сосуды как пути доставки антигенов и выводные протоки для своих «секретов». Лимфоидные образования всегда связаны с кровеносными сосудами, но не всегда имеют афферентные ЛС. Периферические лимфоидные образования находятся на путях оттока тканевой жидкости и лимфы в ЛР и вены. ЛтСи – это комплекс ЛР (дренаж органов – лимфоотток из них, в т.ч. антигенов) и лимфоидной ткани ЛУ и других периферических лимфоидных образований с афферентными ЛС любого типа (многоэтапная очистка лимфы в процессе ее оттока из органов в вены).

Заключение

ЛтСи и ЛдСи участвуют в поддержании гомеостаза индивида, в т.ч. генотипического –через циркуляторную систему в составе ИПС. Она включает тканевые каналы и ЛР, которое коллатерально венам и заканчивается в венах. ЛР отводит из органов тканевую жидкость, не попавшую в вены, в виде лимфы, а в ее составе – клетки, в т.ч. опухолевые, и белки, в т.ч. антитела. Тканевые каналы (рыхлая соединительная ткань) проходят между барьерными тканями, корнями ЛР и кровеносными капиллярами, замыкая таким образом циркуляторную систему организма в круг при сохранении выходов на внешнюю среду. Соединительная ткань объединяет все ткани, в т.ч. эпителии и эндотелии, причем местами трансформируется в лимфоидную ткань, в т.ч. ЛУ. Разные защитные факторы внутренней среды, начиная с механических и физико-химических (непрерывность эпителиев, основное вещество как поглотитель и решетка волокон соединительной ткани, и т.п.) и заканчивая антителами, срабатывают на разных уровнях организации ИПС, устроенной как каскад биофильтров разной конструкции в их связи. ЛР в составе ИПС представляется одним из вариантов организации генотипического гомеостаза индивида, чем однако не исчерпывается роль ЛтСи в поддержании его гомеостаза в целом (водный – базовый для ЛтСи).

Источник

Что такое гомеостатическая функция крови

Кислотно-основное состояние (КОС) организма является одним из важнейших и наиболее строго стабилизируемых параметров гомеостаза. От соотношения водородных и гидроксильных ионов во внутренней среде организма зависят активность ферментов, гормонов, интенсивность и направленность окислительно-восстановительных реакций, процессы обмена белков, углеводов и жиров, функции различных органов и систем, постоянство водного и электролитного обмена, проницаемость и возбудимость биологических мембран и т.д. Активность реакции среды влияет на способность гемоглобина связывать кислород и отдавать его тканям.

Активную реакцию среды принято оценивать по содержанию в жидкостях ионов водорода.

Величина рН является одним из самых «жестких» параметров крови и колеблется у человека в норме в очень узких пределах – рН артериальной крови составляет 7,35–7,45; венозной – 7,32–7,42. Более значительные изменения рН крови связаны с патологическими нарушениями обмена. В других биологических жидкостях и в клетках рН может отличаться от рН крови.

Сдвиги рН крови за указанные границы приводят к существенным сдвигам окислительно-восстановительных процессов, изменению активности ферментов, прницаемости биологических мембран, обусловливают нарушения со стороны функции сердечно-сосудистой, дыхательной и других систем; сдвиг на 0,3 может вызвать коматозные состояния, а на 0,4 – зачастую несовместим с жизнью.

Кислотно-основное состояние поддерживается мощными гомеостатическими механизмами. В их основе лежат особенности физико-химических свойств буферных систем крови и физиологические процессы, в которых принимают участие системы внешнего дыхания, почки, печень, желудочно-кишечный тракт и др.

Химические буферные системы образуют первую линию защиты против изменений рН жидкости организма, действуют для быстрого их предотвращения.

Буферной системой называют смеси, которые обладают способностью препятствовать изменению рН среды при внесении в нее кислот или оснований. Буферные системы не удаляют H+ из организма, а «связывают» его своим щелочным компонентом до окончательного восстановления КОС. Буферными свойствами обладают смеси, которые состоят из слабой кислоты и ее соли, содержащей сильное основание, или из слабого основания и соли сильной кислоты.

Наиболее емкими буферными системами крови являются бикарбонатный, фосфатный, белковый и гемоглобиновый. Первые три системы особенно важную роль играют в плазме крови, а гемоглобиновый буфер, самый мощный, действует в эритроцитах.

Бикарбонатный буфер является наиболее важной внеклеточной буферной системой и состоит из слабой угольной кислоты Н2СО3 и соли ее аниона – сильного основания что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови. Угольная кислота образуется в результате взаимодействия углекислого газа и воды: CO2 + H2O ↔ H2CO3. Угольная кислота в свою очередь диссоциирует на водород и бикарбонат: H2CO3 ↔ H+ + HCO3-.

В нормальных условиях (при рН крови около 7,4) в плазме бикарбоната в 20 раз больше, чем углекислоты.

Емкость бикарбонатной системы составляет 53 % всей буферной емкости крови. При этом на бикарбонат плазмы приходится 35 % и на бикарбонат эритроцитов 18 % буферной емкости.

При образовании в плазме избытка кислореагирующих продуктов ионы водорода соединяются с анионами бикарбоната (что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови). Образующийся при этом в плазме избыток углекислоты поступает в эритроциты и там с помощью угольной ангидразы разлагается на углекислый газ и воду. Углекислый газ выделяется в плазму, возбуждает дыхательный центр и избыток СО2 удаляется из организма через легкие. Это быстрое преобразование бикарбонатом любой кислоты в угольную, которая легко удаляется легкими, делает бикарбонатный буфер самой лабильной буферной системой.

Бикарбонатный буфер способен нейтрализовать и избыток оснований. В этом случае ионы ОНˉ будут связаны углекислотой и вместо самого сильного основания ОНˉ образуется менее сильное что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови, избыток которого в виде бикарбонатных солей выделяется почками.

До тех пор, пока количество угольной кислоты и бикарбоната натрия изменяется пропорционально и соотношение между ними сохраняется 1:20, рН крови остается в пределах нормы.

Фосфатный буфер представлен солями одно- и двузамещенных фосфатов. Фосфатная буферная система обеспечивает 5 % буферной емкости крови, является основной буферной системой клеток.

Однозамещенная соль обладает кислыми свойствами, так как при диссоциации дает ион что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови, который далее способен выделять ион водорода: NаН2РО4 ⇒ Nа+ + что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови; что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови⇒Н+ + что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови. Двузамещенный фосфат обладает свойствами основания, так как диссоциирует с образованием иона что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови, который может связывать ион водорода: что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови+ Н+ ⇒ что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови.

При нормальном рН в плазме соотношение фосфатных солей NаН2РО4: Nа2НРО4 = 1:4. Этот буфер имеет значение в почечной регуляции КОС, а также в регуляции реакции некоторых тканей. В крови же его действие главным образом сводится к поддержанию постоянства и воспроизводства бикарбонатного буфера.

Белковая буферная система является довольно мощным буфером, который способен проявлять свои свойства за счёт амфотерности белков. Белковая буферная система обеспечивает 7 % буферной емкости крови. Белки плазмы крови содержат достаточное количество кислых и основных радикалов, поэтому эта буферная система действует в зависимости от среды, в которой происходит диссоциация белков.

Гемоглобиновый буфер является самой емкой буферной системой. На ее долю приходится до 75 % всей буферной емкости крови. Свойства буферной системы гемоглобину придает главным образом его способность постоянно находиться в виде двух форм – восстановленного (редуцированного) гемоглобина ННb и окисленного (оксигемоглобина) НbО2.

Гемоглобиновый буфер, в отличие от бикарбонатного, в состоянии нейтрализовать как нелетучие, так и летучие кислоты. Окисленный гемоглобин ведёт себя как кислота, увеличивая концентрацию ионов водорода, а восстановленный (дезоксигенированный) – как основание, нейтрализуя H+.

Гемоглобин является классическим примером белкового буфера и эффективность его достаточно высока. Гемоглобин в шесть раз более эффективен как буфер, чем плазменные протеины.

Переход окисленной формы гемоглобина в восстановленную форму предупреждает сдвиг рН в кислую сторону во время контакта крови с тканями, а образование оксигемоглобина в легочных капиллярах предотвращает сдвиг рН в щелочную сторону за счет выхода из эритроцитов СО2 и иона хлора и образования в них бикарбоната.

Система аммиак/ион аммония (NH3/NH4+) – действует преимущественно в моче.

Помимо буферных систем в поддержании постоянства рН активное участие принимают физиологические системы, среди которых основными являются легкие, почки, печень, желудочно-кишечный тракт.

Система дыхания играет значительную роль в поддержании кислотно-щелочного баланса организма, однако для нивелирования сдвига рН крови им требуется 1–3 минуты. Роль легких сводится к поддержанию нормальной концентрации углекислоты, и основным показателем функционального состояния легких является парциальное напряжение углекислого газа в крови. Легочные механизмы обеспечивают временную компенсацию, так как при этом происходит смещение кривой диссоциации оксигемоглобина влево и уменьшается кислородная емкость артериальной крови.

При устойчивом состоянии газообмена легкие выводят углекислого газа около 850 г в сутки. Если напряжение углекислого газа в крови повышается сверх нормы на 10 мм рт. ст., вентиляция увеличивается в 4 раза.

Роль почек в регуляции активной реакции крови не менее важна, чем деятельность дыхательной системы. Почечный механизм компенсации более медленный, чем респираторный. Полноценная почечная компенсация развивается только через несколько дней после изменения pH.

Экскреция кислот при обычной смешанной пище у здорового человека превышает выделение оснований, поэтому моча имеет кислую реакцию (рН 5,3–6,5) и концентрация в ней ионов водорода примерно в 800 раз выше, чем в крови. Почки вырабатывают и выделяют с мочой количество ионов водорода, эквивалентное их количеству, непрерывно поступающему в плазму из клеток организма, совершая при этом замену ионов водорода, секретируемых эпителием канальцев, на ионы натрия первичной мочи. Этот механизм осуществляется с помощью нескольких химических процессов.

Первым из них является процесс реабсорбции натрия при превращении двузамещенных фосфатов в однозамещенные. При истощении фосфатного буфера (при рН мочи ниже 4,5) реабсорбция натрия и бикарбоната осуществляется за счет аммониогенеза.

Второй процесс, который обеспечивает задержку натрия в организме и выведение излишка ионов водорода, – это превращение в просвете канальцев бикарбонатов в угольную кислоту.

Третьим процессом, который способствует сохранению натрия в организме, является синтез в дистальных почечных канальцах аммиака (аммониогенез) и использование его для нейтрализации и выведения кислых эквивалентов с мочой.

Образовавшийся свободный аммиак легко проникает в просвет канальцев, где, соединяясь с ионом водорода, превращается в плохо диффундирующий аммонийный катион что такое гомеостатическая функция крови. Смотреть фото что такое гомеостатическая функция крови. Смотреть картинку что такое гомеостатическая функция крови. Картинка про что такое гомеостатическая функция крови. Фото что такое гомеостатическая функция крови, не способный вновь вернуться в клетку стенки канальца.

В общем итоге концентрация водородных ионов в моче может превышать концентрацию водородных ионов в крови в несколько сотен раз.

Это свидетельствует об огромной способности почек выводить из организма ионы водорода.

Почечные механизмы регуляции КОС не могут скорректировать рН в течение нескольких минут, как респираторный механизм, но они функционируют в течение нескольких дней, пока рН не вернется к нормальному уровню.

Регуляция КОС с участием печени. Печень окисляет до конечных продуктов недоокисленные вещества крови, оттекающей от кишечника; синтезирует мочевину из азотистых шлаков, в частности из аммиака и из хлорида аммония, поступающих из желудочно-кишечного тракта в кровь портальной вены; печени присуща выделительная функция и поэтому при накоплении в организме избыточного количества кислых или щелочных продуктов метаболизма они могут выделяться с желчью в желудочно-кишечный тракт. При избытке кислот в печени усиливается их нейтрализация и одновременно тормозится образование мочевины. Неиспользованный аммиак нейтрализует кислоты и увеличивает выведение аммонийных солей с мочой. При возрастании количества щелочных валентностей мочекинообразование возрастает, а аммониогенез снижается, что сопровождается уменьшением выведения с мочой аммонийных солей.

Концентрация водородных ионов в крови зависит также от деятельности желудка и кишечника. Клетки слизистой желудка секретируют соляную кислоту в очень высокой концентрации. При этом из крови ионы хлора выделяются в полость желудка в соединении с ионами водорода, образующимися в эпителии желудка с участием карбоангидразы. Взамен хлоридов в плазму в процессе желудочной секреции поступает бикарбонат.

Поджелудочная железа активно участвует в регуляции рН крови, так как она генерирует большое количество бикарбоната. Образование бикарбоната тормозится при избытке кислот и усиливается при их недостатке.

Кожа может в условиях избытка нелетучих кислот и оснований выделять последние с потом. Это имеет особое значение при нарушении функции почек.

Костная ткань. Это наиболее медленно реагирующая система. Механизм ее участия в регуляции рН крови состоит в возможности обмениваться с плазмой крови ионами Са2+ и Na+ в обмен на протоны Н+. Происходит растворение гидроксиапатитных кальциевых солей костного матрикса, освобождение ионов Са2+ и связывание ионов НРО42– с Н+ с образованием дигидрофосфата, который уходит с мочой. Параллельно при снижении рН (закисление) происходит поступление ионов H+ внутрь остеоцитов, а ионов калия – наружу.

Оценка кислотно-основного состояния организма

При изучении кислотно-щелочного баланса наибольшее значение имеет исследование крови. Показатели в капиллярной крови близки к показателям артериальной. В настоящее время показатели КОС определяют эквилибрационным микрометодом Аструпа. Данная методика позволяет, помимо истинного рН крови, получить показатель напряжения СО2 в плазме (рСО2), истинный бикарбонат крови (АВ), стандартный бикарбонат (SB), сумму всех оснований крови (ВВ) и показатель дефицита или избытка оснований (ВЕ).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *