что такое голографический эффект
Как в ближайшем будущем будут использовать трехмерные голограммы
Технологии голографии активно используют стартапы и большие технологические компании. Голограммы становятся предметом искусства, они используются в музеях, с помощью них презентуют новые продукты. Рассказываем, как голограммы помогают нам сегодня и во что они превратятся в ближайшем будущем.
Читайте «Хайтек» в
Что такое голограмма?
Голограмма — это трехмерный объект, который может отражать предметы в пространстве. Отличительная особенность в том, что ее можно увидеть без применения специальных линз.
Сегодня для того, чтобы сделать голограммы используется инфернация волн. Это означает, что волны излучающие одинаковую амплитуду, преломляются, и пересекаются в определенной точке. Иначе говоря, два луча лазера направляют свет в определенную точку: 1-й луч идет как и положено, второй преломляется (например от зеркала) и в итоге они встречаются в определенной точке, в месте встречи этих лучей мы получаем точку пересечения, то есть точку которую мы видим в пространстве, таким образом, при использовании мощных компьютеров можно создавать любое изображение.
Как создать голограмму?
Существует два метода создания голограммы:
Им впервые воспользовалась компания Microsoft. Она представила голографические очки HoloLens на презентации в 2015 году. Компания научилась создавать виртуальные объекты, встроенные в реальный мир.
Для того, чтобы создавать голограмму, разработчики использут инструменты для импортировки файлов из других сервисов или создают 3D-объекты с помощью интерфейса.
В этом случае лазер сначала регистрирует, а потом восстанавливает максимально приближенные к реальным 3D-изображения. Когда лазер освещает голограмму, формируется точный клон нужного объекта вместе со всеми его свойствами. Например какие-либо изменения перспективы при движении смотрящего.
В самом элементарном случае испускаемый лазером луч расширяется и делится на две части. Одна часть падает на фотопластинку и отражается от зеркала — это опорный луч. Другая отражается от объекта и называется предметным лучом.
В таком случае оба пучка должны иметь одинаковую длину волны и двигаться в одной фазе. Тогда опорный и предметный лучи соединяются вместе в интерференционную картину. Это чередование повышенной и пониженной интенсивности света. При максимальной интенсивности эмульсия засвечивается сильнее, при минимальной — слабее.
Чтобы восстановить изображение, проявленную фотопластинку помещают в то же место, где она находилась при фотографировании, и освещают опорным пучком света. Часть лазерного пучка, которая освещала предмет, перекрывается.
Опорный пучок огибает (дифрагирует) на голограмме. В результате получается точно такая же волна, как у отражённого предмета. Эта волна и даёт изображение предмета.
Как голограммы используют в реальной жизни?
С помощью голографических технологий можно совершать звонки. При звонке формируются голограммы собеседника, которые полностью передают эмоции и жестикуляцию пользователя. Первый такой разговор произошел в 2017 году между двумя крупнейшими операторами Verizon (США) и Korea Telecom (Южная Корея).
Такой способ подходит и для дистанционного образования. В таком случае все ученики во всех частях мира видят лектора.
Также голограммы могут смоделировать трехмерное пространство. Описанный в исследовании метод ученых из Технологического университета Мюнхена позволяет создавать копии помещений, отображая предметы вокруг них. Это может помочь, например использовать технологию для обнаружения жертв под завалами.
Также голограммы могут помочь продемонстрировать большой аудитории один небольшой объект. В феврале 2017 года Barbie презентовала голографическую куклу-бота, которая реагирует на голосовые команды.
Стартапы с голограммами
Это российский стартап, который специализируется голографических решениях для смешанной реальности. Проект создаёт приложения для очков дополненной реальности Microsoft HoloLens, а также сотрудничал с «Уралкалий», Hyundai, «Новатэк», «Ашан».
Это еще одна российская компания, которая создает навигационную систему Navion, основанную на технологии дополненной реальности. В устройство входит голографическая плёнка, которая наносится на лобовое стекло автомобиля.
Будущее голограмм
Исследователь Дэниэл Смолли из MIT Media Lab предложил технологию для голографического телевидения, основанную на использовании оптического чипа. В его блоге можно даже посмотреть схемы и описание.
Кристофер Ист из компании WaterWorks создал визуализацию идеи телефона с голографической технологией. Ист убежден, что такой телефон будет не только незаменим для презентаций и работы дизайнеров и архитекторов, но и станет важным инструментом в сферах маркетинга, урбанистики и образования.
Разработчики сделали одноместный лайтбокс для «голопортации». Этот комплекс предназначен для того, чтобы один человек мог с максимальным эффектом присутствия и обратной связью дистанционно общаться с другими людьми.
В компании говорят, что пользователь при «голопортации» в прямом эфире получит возможность видеть и слышать аудиторию на другом конце интернет-соединения. Контент в разрешении 4K можно зацикливать и активировать с помощью движения, используя HOLOPORTL как автономное устройство для взаимодействия с людьми.
Когда голограммы войдут в повседневную жизнь
Краткий разбор по созданию голограмм и реальные примеры их применения.
Голограммы позволяют отражать объекты в трёхмерном пространстве даже без применения специальных очков. Такое изображение можно использовать на презентациях, деловых мероприятиях, в музеях, во флагманских магазинах — везде, где важно взаимодействие с объектом.
Есть два способа создания голограмм: компьютерный — для очков дополненной реальности и физический — для оптических дисплеев.
Microsoft — первая компания, которая представила голографические очки HoloLens. На презентации в 2015 году компания заявила, что новое устройство перевернёт представления о технологии дополненной реальности. Windows Holographic — это виртуальные объекты, встроенные в реальный мир.
Для создания голограмм для HoloLens разработчики используют инструмент HoloStudio. Приложение умеет импортировать файлы из других сервисов или создавать 3D-объекты с помощью интерфейса.
В физике голография — это особый фотографический метод, при котором сначала с помощью лазера регистрируются, а затем восстанавливаются максимально приближенные к реальным 3D-изображения. При освещении лазером голограммы формируют точный 3D-клон объекта и копируют его свойства. Например, изменение перспективы при перемещении смотрящего.
В самом элементарном случае испускаемый лазером луч расширяется и делится на две части. Одна часть падает на фотопластинку и отражается от зеркала — это опорный луч. Другая отражается от объекта и называется предметным лучом.
Оба пучка лучей должны иметь одинаковую длину волны и двигаться в одной фазе. Опорный и предметный лучи складываются на фотопластинке и образуют интерференционную картину (чередование повышенной и пониженной интенсивности света). При максимальной интенсивности эмульсия засвечивается сильнее, при минимальной — слабее.
Чтобы восстановить изображение, проявленную фотопластинку помещают в то же место, где она находилась при фотографировании, и освещают опорным пучком света. Часть лазерного пучка, которая освещала предмет, перекрывается.
Опорный пучок огибает (дифрагирует) на голограмме. В результате получается точно такая же волна, как у отражённого предмета. Эта волна и даёт изображение предмета.
В апреле 2017 года два крупнейших оператора Verizon (США) и Korea Telecom (Южная Корея) совершили первый международный голографический звонок с помощью технологии 5G. При звонке формируются голограммы собеседника, которые полностью передают эмоции и жестикуляцию пользователя. Во время теста голограмма собеседника отражалась на экране экспериментального устройства.
Технология голографической коммуникации требует высокой пропускной способности, поэтому пока что она возможна только в сетях 5G, которые в 10-100 раз быстрее существующих сетей.
С помощью голографии можно транслировать лектора с другого конца света. Например, в 2015 году нобелевский лауреат и профессор физики в Стэнфордском университете Карл Виман выступил в Наньянском технологическом университете (Сингапур), не покидая США. Подготовка и настройка голографического дисплея заняла три недели. А планирование презентации, включая тестирование интернет-скорости, — пять месяцев.
Профессор НТУ отметил, что таким образом преподаватели мирового уровня могут одновременно выступать в разных частях мира и охватить более широкую аудиторию, не тратя время на перелёты.
Также с помощью голографии можно создавать интерактивные модели для обучения. В 2013 году Лондонский университет Святого Георгия представил голограммы внутренних органов. В презентации показали трёхмерные изображения почек длиной четыре метра, череп и другие органы человека.
На Петербургском международном экономическом форуме НИУ «Высшая школа экономики» создал для гостей мероприятия лекторий, в котором выступали голографические проекции учёных университета. Преподаватели рассказывали об «умных» городах, современных медиа и будущем планеты.
В мае 2017 года учёные из Технологического университета Мюнхена разработали метод получения трёхмерных голограмм с помощью Wi-Fi-роутера. Описанный в исследовании метод позволяет создавать копии помещений, отображая предметы вокруг них.
Таким образом физики научились «проникать сквозь стены». В будущем технологию можно использовать для нахождения и спасения жертв под лавиной или обрушившимися зданиями.
С помощью голографии можно оцифровывать предметы искусства. В 2015 году Университет ИТМО и музей Фаберже создали голографические копии некоторых яиц из коллекции. А в мае 2017 года в музее мадам Тюссо установили первую голограмму — образ немецкого видеоблогера Бьянки «Биби» Хайнике.
В Музее истории Костромского края работает электронный экскурсовод Нюша, которая встречает гостей. В Еврейском музее Москвы можно поучаствовать в традиционной трапезе с голографией еврейской семьи или посетить свадьбу. А в ярославском Центре имени Валентины Терешковой посетители могут увидеть смоделированную галактику.
Голограммы продукта — новый маркетинговый ход, который помогает захватить внимание клиента. С помощью голограмм можно увеличить 3D-копию продукта и сделать её обозреваемой со всех сторон.
В феврале 2017 года Barbie презентовала голографическую куклу-бота, которая реагирует на голосовые команды. Игрушка умеет отвечать на вопросы о погоде, может повторять фразы и будить.
Российский стартап HoloGroup разрабатывает голографические решения для смешанной реальности. Проект создаёт приложения для очков дополненной реальности Microsoft HoloLens. В 2017 году ФРИИ инвестировал в компанию 23 млн рублей. Компания сотрудничала с «Уралкалий», Hyundai, «Новатэк», «Ашан».
WayRay — российская компания с офисами в Швейцарии и России. Проект создаёт навигационную систему Navion, основанную на технологии дополненной реальности. В устройство входит голографическая плёнка, которая наносится на лобовое стекло автомобиля.
Корреспондент vc.ru узнал у генерального директора компании Hologroup Александра Якубова, какие перспективы ждут голографию в бизнесе.
В ближайшие пять-семь лет человечество переживёт очередную информационную революцию, которая изменит подход работы с данными.
Больше не нужны будут физические инструменты для отображения информации: экраны ноутбуков, телевизоры, проекторы, билборды, телефоны. Зачем нам физические экраны, если они могут быть голографическими: любого размера и количества, в любом месте и проецироваться нам прямо в глаза.
Мы попали в первую волну разработчиков для Hololens (очки смешанной реальности Microsoft) и сразу начали поиск прикладного применения для бизнеса и в других сферах деятельности. За полтора года мы для себя определили три основных направления, где голографию можно эффективно использовать уже сейчас.
Реклама и маркетинг
Мы реализовали десяток проектов для L’Oreal, «Новотэка», «УралКалия», Hyundai и других компаний, в которых презентовали продукты и услуги компаний с использованием голограмм. Технология помогает проводить 3D-презентации, интегрированные в реальное окружение выставочных пространств, шоу-румов, корпоративных музеев.
Такое изображение глубоко воздействует на аудиторию при маркетинговом контакте и уже активно применяется практике. Например, на презентации бренда Genesis на Восточном экономическом форуме компания использовала голографические технологии как основной инструмент коммуникации, а не вспомогательный, как часто бывает с новыми технологиями.
В строительной индустрии есть несколько типов проблем, которые решаются с помощью технологии смешанной реальности. Сейчас разработчики учатся применять BIM-проектирование — когда изменение одного из параметров проецируемого объекта влечёт изменение других параметров. При традиционном подходе затрачиваются большие ресурсы на контроль за ходом работ и проверкой на соответствие между запланированным и построенным.
Смешанная реальность позволяет многократно упростить процедуру, ускорить и повысить качество, так как в очках Hololens можно визуально совместить реальный строительный объект и его цифровую модель. Это помогает быстро выявлять коллизии, опережение или отставание от плана. Например, наши продукты применяет компания IBCON, которая контролирует крупнейшие стройки для газовой и добывающей индустрий.
Также голографию начинают применять для согласования дизайна интерьеров офисов и магазинов. Это решает проблему, когда у заказчиков часто отсутствует пространственное восприятие, и архитекторам приходится долго объяснять, чтобы донести до заказчика свои концепции и идеи. Смешанная реальность помогает визуализировать будущий интерьер на реальном пространстве и быстро принять решение.
Один из наших клиентов, компания Auchan Holding, в рекордные сроки открыла новый формат магазинов на Тверской, так как с помощью голографической модели можно было пройтись по недостроенному магазину и посмотреть, будет ли удобно ходить между стеллажами, видна ли реклама от входной группы.
Индустриальные компании и сложное оборудование
Меняется система обучения работе с оборудованием или на производстве: персонал получает визуальные инструкции прямо на месте. В этом направлении сейчас запускают больше пилотных проектов, чем внедряют технологию масштабно. Но с учётом уровня воздействия на бизнес-процессы и возможности экономить огромные ресурсы, это очень перспективное направление.
Сейчас мы делаем совместный проект с компанией Enel Russia, которая владеет и эксплуатирует энергогенерирующие станции в разных частях страны. Одна из задач — упростить и повысить надёжность при выполнении инструкций по эксплуатации сложного оборудования техническим персоналом станции.
Персонал станции тестирует выполнение различных операций с голографическим руководством и инструкциями, привязанными к конкретному оборудованию. Также разрабатывается система удалённого мониторинга и контроля действий сотрудников на местах из операционного центра.
Несмотря на новаторство подобного подхода, сотрудники на местах с большим энтузиазмом воспринимают подобные изменения и чувствуют, что это может существенно упростить их трудовую деятельность и быть реально полезным.
Некоторые производители сложного оборудования и техники тоже интересуются голографическими технологиями для послепродажного обслуживания. Это позволяет снабжать продукцию инструкциями по эксплуатации, ремонту и пользованию в голографической реальности, что снижает сложность обучения своих клиентов и последующее обслуживание.
Есть сложности, связанные с новой для бизнеса технологией. Условно их можно разделить на три направления. Первое — это слишком новаторская технология, у бизнеса и людей нет практического опыта взаимодействия со смешанной реальностью и голограммами. Поэтому разработчикам и производителям оборудования приходится по сути создавать новый рынок.
Сложно представить, что сейчас в компаниях на совещании по одной из бизнес-проблем кто-то предложит: «Давайте рассмотрим, как мы можем решить эту проблему с использованием голограмм?»
Мы разработали программное обеспечение, которое позволяет создавать голографические экскурсии. Это достаточно просто, не сложнее PowerPoint. Но сколько людей в мире правильно может интерпретировать и ассоциировать со своим опытом фразу «голографическая экскурсия»? Поэтому одна из проблем — необходимость донести до бизнеса возможности новых технологий.
Вторая сложность — ни один человек в мире ещё не знает рецепта идеального пользовательского опыта при работе с цифровыми данными, интегрированными в окружающую среду. Разработчики получили Hololens полтора года назад, это действительно перевернуло представление о работе с информацией.
Наша компания получила устройство одной из первых. Мы специализируемся только на смешанной реальности, но нам часто требуются дополнительные эксперименты и пилотные проекты — пользовательский опыт поможет сделать решение применимым.
Третье направление — ограниченные возможности устройств для работы с голограммами. Устройства вроде Microsoft Hololens находятся на острие возможностей технологического прогресса, но всё равно имеют ограничения производительности, размера, заряда батареи, угла обзора и другие. С этими проблемами приходится считаться разработчикам при удовлетворении потребностей бизнеса.
Последние достижения в области художественной голографии связаны с созданием оптоклонов — ультрареалистичных полноцветных голограмм. Воссоздаваемые ими изображения объектов практически неотличимы от самих оригиналов.
Эту технологию разработали на основе комплексных исследований, включающих в себя новые фоторегистрирующие среды, новые оптические компоновки лазерных RGB-систем и специальные светодиодные устройства с управляемым спектром.
Результатами таких научно-исследовательских работ стали: голографические фотопластины со стабильно высокими качественными показателями; мобильные голографические камеры, приспособленные для работы непосредственно в музейных помещениях; возможность индивидуальной настройки осветителей для каждого создаваемого оптоклона.
Для бизнеса — это возможность создания предельно точных объёмных аналоговых изображений практически любых артефактов, музейных сокровищ или уникальных экспонатов, которые по тем или иным причинам не могут широко экспонироваться. Это позволяет значительно расширить аудиторию зрителей, легко организовывать музейные филиалы или выездные экспозиции, максимально детально документировать образы исторически значимых объектов.
Если говорить о современной голографии в общем смысле, то помимо уже описанной художественной голографии, имеется ряд уникальных технических и научных приложений: синтезирование компьютерных голограмм на основе разнообразных источников информации — медицинской томографии, систем интровидения, геофизических (например, сейсмических) данных, CAD-CAM проектов архитектурных объектов или инженерных сетей, трёхмерного картографирования и тому подобное.
В отличие от компьютерных 3D-моделей, цифровые голограммы не подвержены воздействию электронных помех и полностью отвечают эргономическим требованиям когнитивной визуализации — представления сложных объектов, которое существенно облегчает их понимание.
В данном случае мы даже не говорим о самом массовом применении голограмм, как маркировка товаров или защитные элементы платёжных или иных документов. Существующие и создаваемые сейчас элементы голографической памяти наверняка станут одним из важнейших компонентов искусственного интеллекта.
Примеров можно привести множество — от голограмм мозга пациента (для лучшей его диагностики), многоракурсных голограмм проектируемых инноградов (для более наглядной презентации проектов) или актуальных голографических карт, создаваемых прямо в полевых условиях.
Но сегодня в центре внимания находятся голографические дисплеи. Движущиеся голографические образы уже демонстрируются наиболее продвинутыми ИТ-компаниями, например, южно-корейскими и американскими. На сегодня это достаточно уникальные, дорогие и массивные конструкции.
Для их повсеместного внедрения остаётся решить две технических проблемы: на порядок уменьшить размер экранного пикселя и существенно повысить мощность процессора для пересчёта исходной интерференционной картины в режиме реального времени.
По общему мнению, через 10-15 лет прозрачные круговые ЖК-дисплеи позволят нам в домашних условиях смотреть голографическое кино без специальных очков с любого ракурса в максимальном разрешении. И будет обидно, если эта грядущая революция в области систем визуализации состоится без участия нашей страны.
Сейчас постепенно внедряется цифровая голография, но в основном для решения специальных вопросов. Если говорить о классической голографии, появились голограммы, которые восстанавливаются при обычном свете. Такие голографические изображения можно рассматривать как обычную картинку, не используя каких-либо дополнительных инструментов.
Классическое голографическое изображение можно посмотреть только с использованием лазера, а голограмма Денисюка требует направленного источника света (им может быть солнце или прожектор). Такие новые голограммы сейчас выпускаются в Новосибирске.
Голография — это высококачественное, объёмное изображение. Поэтому, голографические устройства можно использовать для проведения каких-либо выставочных мероприятий. Кроме этого, производные от голографии методы используются в исследовательских работах для измерения деформаций металлических элементов.
Например, на выставке голограмм в Институте оптики и оптических технологий Сибирского государственного университета геосистем и технологий в Новосибирске мне запомнилось изображение человека, надувающего мыльный пузырь. При этом голова человека была изображена за стеклом, а мыльный пузырь — перед стеком.
В сфере бизнеса голограммы могут использоваться для изготовления сувенирной и рекламной продукции. Также с помощью голограмм сегодня изготавливают оптические элементы. Например, дифракционные решётки.
Мы живем в голограмме: самые странные теории о Вселенной, которые могут оказаться правдой
Ученые не первую сотню лет пытаются понять, что такое Вселенная на самом деле. В последнее время развиваются технологии, исследователи больше узнают об окружающем мире и появляются новые теории о том, как все устроено. Одни из них звучат правдоподобно, а другие — безумно. «Хайтек» рассказывает о двух самых странных, но захватывающих, теориях об устройстве Вселенной.
Читайте «Хайтек» в
Почему Вселенная такая, какая она есть? На протяжении многих лет ученые исследовали этот вопрос и выдвинули множество идей, которые объясняют, как устроен космос и что его ждет в будущем. Известно, что Вселенная состоит из скоплений галактик. В каждой галактике — десятки и сотни миллиардов звезд с вращающимися вокруг них планетами, а также газо-пылевые облака огромных размеров. Есть еще гипотетическая темная материя и темная энергия, которая отвечает за расширение Вселенной. Однако некоторые ученые считают, что все устроено гораздо сложнее.
Голографическая Вселенная
Так появилась идея голографической черной дыры, которая хранит информацию о падающих в нее трехмерных объектах на двухмерный горизонт событий. Потом ученые пошли дальше — они предположили, что вообще любая информация в любом объеме может быть записана на поверхности, ограничивающей этот объем. Если мы говорим об информации из черного ящика, то она записана на стенках черного ящика, если информация о Солнечной системе, то записать ее можно на воображаемой сфере вокруг нее, а данные обо всем, что происходит во Вселенной, записано на ее границе.
Для этого не нужны какие-то определенные границы, ведь это теоретический принцип. Если подытожить, то он гласит, что, вся информация и процессы, которые происходят на участке пространства равна какой-то записи на границе этого объема. Теория голографической Вселенной предполагает, что все, что человек видит, слышит. ощущает и наблюдает, может быть как реальностью, так и «голографической» 3D-проекцией 2D-записей на «стене, которая окружает Вселенную». Здесь очень важны кавычки — голография не похожа на ту, к которой мы привыкли, это лишь схожий принцип. И, конечно, мир не окружен настоящей стеной, она воображаемая, как экватор на глобусе.
Несмотря на то, что эта идея звучит безумно, это научно проверяемая теория. Ученые, которые провели исследование в 2017 году. Международная группа космологов из Канады, Великобритании и Италии получила данные, свидетельствующие в пользу теории голографической Вселенной. Космологи использовали двумерную модель Вселенной, которая на основе наблюдаемых ранее параметров, смогла в точности воспроизвести картину микроволнового фона — теплового излучения, равномерно заполняющего космическое пространство. Полученные результаты свидетельствуют в пользу применимости голографического принципа, хотя пока и не опровергают стандартные космологические модели.
Вселенная — это сверхтекучая жидкость
Даже если пространство имеет только три измерения, все еще существует четвертое измерение в форме времени. Именно поэтому теоретически можно визуализировать Вселенную, которая существует в четырехмерном пространстве-времени. В 1905 году Эйнштейн в своей теории относительности первым предположил, что пространство и время могут быть связаны между собой. При этом сам термин «пространство-время» придумали лишь три года спустя, его автор — математик Герман Минковский. «Отныне время само по себе и пространство само по себе становятся пустой фикцией, и только единение их сохраняет шанс на реальность» — заявил он на коллоквиуме в 1908 году.
Согласно некоторым теориям, например, предложенной итальянскими физиками Стефано Либерати и Лукой Макчионе, пространство-время — это не просто абстрактная система отсчета, содержащая физические объекты, такие как звезды и галактики. Итальянские ученые считают, что это физическая субстанция сама по себе, аналогичная океану, полному воды. Подобно тому, как вода состоит из бесчисленных молекул, согласно теории, пространство-время — состоит из микроскопических частиц на более глубоком уровне реальности.
Вообще, сама идея о том, что пространство-время ведет себя как жидкость, самая новая — теорию «сверхтекучего вакуума» предложили больше полвека назад. Но итальянские исследователи стали первыми, кто задались вопросом о вязкости такой жидкости. То, как все движется во Вселенной — одна из загадок в физике. Например волна распространяется через воду, используя ее как «среду» для перемещения. Передача энергии требует среды, но как электромагнитные волны и, например, фотоны, движутся в пространстве, где вроде нет ничего?
Либерати и Макчионе предложили решение проблемы — они разработали теорию сверхтекучего космоса. Согласно ей, Вселенная состоит из сверхтекучей жидкости с нулевой вязкостью, которая ведет себя как единое целое. Сверхтекучей можно назвать жидкость, которая может течь бесконечно, при этом не теряя энергию. Это не выдуманная концепция, такие жидкости существуют на самом деле. Сверхтекучесть — фаза вещества, в которое переходят жидкости или газы, когда остывают до температур вблизи абсолютного нуля. В этом состоянии атомы теряют индивидуальные свойства, и ведут себя, как единый супер-атом. Самая известная сверхтекучая жидкость — это гелий, но лишь охлажденный до 2 K (Кельвинов) или –271,15 ℃.
У сверхтекучих жидкостей есть несколько уникальных свойств. Они могут, например, подняться по стенкам незакрытого сосуда и «сбежать» из него. При этом, их просто невозможно нагреть — они отлично передают тепло. Жидкость со сверхтекучими свойствами просто испарится при нагреве.
Теория визуализирует пространство-время как сверхтекучую жидкость с нулевой вязкостью. Странным свойством таких жидкостей является то, что их нельзя заставить вращаться «оптом», как «работает» обычная жидкость при перемешивании. Они распадаются на крошечные вихри. В 2014 году ученые выяснили, что эти квантовые «торнадо» в ранней Вселенной объясняют возникновение галактик.
Будущее Вселенной
Над созданием таких глобальных и странных теорий работает много ученых — физики, математики, астрономы. Все эти дисциплины объединяет космология. Как науке, космологии всего сто лет, но она уже очень многое знает о том, как устроена наша Вселенная — как образовалось все, что нас окружает, от атомов до галактик, с чего все началось и чем закончится. Разные теории объясняют мир по-своему. Возможно, однажды ученые придут к единому ответу.
В пещере есть два узника. По Платону, пещера — это чувственный мир, в котором живут люди. Как и узники пещеры, они полагают, будто благодаря органам чувств могут понять истинную реальность. Но такая жизнь — всего лишь иллюзия. Об истинном мире идей они могут судить только по смутным теням на стене пещеры. Философ может получить более полное представление о мире идей, постоянно ставя вопросы и находя ответы.
Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам.
Горизонт событий — граница в астрофизике, за которой события не могут повлиять на наблюдателя. Внутри горизонта событий все пути ведут частицы в центр черной дыры. Не существует способа для частиц выйти оттуда.