что делает ядро в клетке

Строение и функции ядра

Урок 13. Введение в общую биологию и экологию 9 класс ФГОС

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Конспект урока «Строение и функции ядра»

Мы продолжаем знакомство со строением эукариотической клетки. В переводе с древнегреческого «карион» означает ядро. То есть эукариотические клетки, это клетки, которые содержат ядро.

В 1831 году английский ботаник Роберт Броун впервые описал ядро растительной клетки, а в 1833 году установил, что ядро является обязательным органоидом клетки растения. Ядро − это центр управления клеткой.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Оно содержится практически во всех клетках многоклеточных организмов за исключением красных кровяных телец – клеток крови – эритроцитов и кровяных пластинок тромбоцитов, они лишены ядра.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Не имеют оформленного ядра и одноклеточные бактерии, по этой причине их называют прокариотами. То есть доядерные одноклеточные живые организмы.

Ядро необходимо для осуществления двух важных функций:

1 функция: это деление клетки, при котором образуются подобные материнской − новые клетки.

И 2 функция: регуляция всех процессов белкового синтеза, обмена веществ и энергии, идущих в клетках.

В большинстве клеток ядро шаровидное или овальное. Однако встречаются ядра и другой формы (ветвистые, палочковидные, лопастные, чётковидные, подковообразные и другие.). Размеры ядер колеблются в широких пределах − от 3 до 25 мкм.

Наиболее крупным ядром обладает яйцеклетка.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Большинство клеток человека имеют одно ядро, но существуют также двухъядерные и многоядерные клетки (например, волокна поперечно-полосатых мышц).

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Одноклеточный организм инфузория туфелька так же содержит два ядра.

Рассмотрим строение ядра подробнее.

От цитоплазмы оно отделено двойной мембраной. Которая состоит из наружной и внутренней мембраны.

Пространство между наружной и внутренней мембранами оболочки клеточного ядра – перинуклеарное пространство, заполнено полужидким веществом.

В некоторых местах мембраны сливаются друг с другом, образуя поры, через которые происходит обмен веществ между ядром и цитоплазмой.

Из ядра в цитоплазму транспортируются в основном разные виды РНК. В частности, матричная РНК, которая синтезируется в ядре на основе ДНК.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

А из цитоплазмы в ядро поступают все ферменты, необходимые для синтеза РНК.

Ядерные мембраны являются частью мембранной системы клетки: выросты наружной ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов.

Ядро также содержит ядрышки, количество которых может колебаться от одного до семи.

Ядрышко − это немембранная внутриядерная органелла. Которая представляет собой комплекс белков и предшественников рибосомных субъединиц.

Основная функция ядрышка − это синтез РНК и белков, из которых формируются особые органоиды – рибосомы.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Рибосомы синтезируют белки из аминокислот по заданной матрице на основе генетической информации, предоставляемой матричной РНК.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Рибосомы представляют собой комплексы рибосомальной РНК с белками.

В ядрышке образуются предшественники рибосом, которые перемещаются к порам ядра, проходят через них в цитоплазму клетки и превращаются в рибосомы. Где, они принимаются за синтез белков.

Вокруг ядра рибосомы и другие органеллы плавают в цитоплазме. Рибосомы могут свободно перемещаться в цитоплазме. Либо прикрепляться к эндоплазматической сети.

Ядро содержит ДНК, которая диктует что клетка будет делать и как она это будет делать.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

До деления, генетический материал клетки находиться в виде хроматина − комплекса ДНК, РНК и белков.

Когда клетка готова к делению ДНК сильно уплотняется.

Каким же образом это происходит?

Перед делением клетки, ДНК дважды обматывается вокруг белков гистонов. В результате чего формируются структурные части хромосомы – нуклеосомы.

При этом образуется структура, которая напоминает «бусы на нити». Таким образом создаются хромосомы.

Хромосома – это наиболее компактная форма хранения наследственного материала клетки. По сравнению с нитью ДНК укорочение составляет примерно 1600 раз.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Хроматида – это нуклеопротеидная нить, половинка двойной хромосомы.

Центромера делит хромосому на короткое и длинное плечо. К центромере во время деления клетки, присоединяются нити веретена деления.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Это веретенообразная система микротрубочек. Микротрубочки веретена присоединяются к белковым структурам хроматид в области центромер и обеспечивают движение хромосом по направлению к полюсам.

Хромосома может быть одинарной (состоять из одной хроматиды) и двойной (из двух хроматид).

В обычном состоянии нити ДНК расплетены. Это необходимо для того что бы участки ДНК – гены, в которых зашифрована структура какого-либо белка, свободно функционировали.

Так как это возможно только тогда, когда ДНК деспирализована, то есть расплетена.

Хромосомный набор клетки

Клетки, которые составляют тело многоклеточных организмов и не принимают участия в половом размножении, называются соматическими клетками. К ним относят, например, нервные, мышечные клетки, эпителиальные.

В ядрах таких клеток содержится двойной (диплоидный) набор хромосом. То есть по две хромосомы каждого вида − (гомологичные хромосомы).

Гомологичные хромосомы – это парные, одинаковые хромосомы (одна от матери –другая от отца).

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Половина хромосом, которая досталась от (гаплоидного) сперматозоида отца и вторая половина от материнской (гаплоидной) яйцеклетки. То есть диплоидная соматическая клетка образовалась путём слияния 2 гаплоидных гамет.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Гаплоидный набор хромосом – это набор различных по размерам и форме хромосом клеток данного вида, где каждая хромосома представлена в единственном числе, в отличие от диплоидного набора, когда каждой хромосомы по две. Таким образом гаплоидный набор хромосом содержится в ядрах половых клеток (гамет).

Каждый организм имеет определённое количество хромосом. Такой набор называется кариотипом.

В кариотипе человека 46 хромосом − 44 из которых аутосомы и 2 половые хромосомы.

Диплоидный набор хромосом − это 46 хромосом, а гаплоидный набор, это 23 хромосомы.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Таким образом кариотип − это совокупность признаков полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип) или данного организма (индивидуальный кариотип).

Именно индивидуальность кариотипа сохраняет видовое постоянство из поколения в поколение.

Источник

Ядро растительной клетки: строение и функции

Содержание:

В большинстве случаев на одну клетку приходится одно ядро, но есть и исключения. Клетки грибницы некоторых грибов содержат два ядра, а проводящие ситовидные трубки высших растений не имеют таковых вообще, хотя являются живой частью. Возможно наличие более двух ядер в одной клетке – полиплоидия.

Внешнее строение

Внешне ядро чаще всего напоминает шар или эллипс. В зависимости от строения самой клетки, форма может значительно вытягиваться и становиться веретеновидной. Сначала оно располагается в центре растительной клетки, но в процессе старения смещается к периферии, ближе к клеточной стенке, из-за увеличивающейся вакуоли. В делящихся клетках ядро занимает до половины объема самой клетки.

Внутреннее строение

Все эукариотические ядра состоят из следующих структур и компонентов:

Химический состав ядер одинаков у представителей всех царств. Оно содержит практически всё Дезоксирибонуклеиновые кислоты клетки. Помимо ДНК, в жидкой части ядра также есть три виды РНК:

Внутри ядра находится кариоплазма (или нуклеоплазма) – основное содержимое важнейшего органоида. Имеет вид бесцветной жидкости. В ней свободно расположены хроматин, рибосомы, ядрышки, молекулы тРНК и иРНК и специфических ферментов. Эти ферменты участвуют в процессах метаболизма, синтеза и транспортировки РНК.

Хроматин – активная форма хромосом. Находится в ядре в формате тонких извилистых нитей, фибрилл, и гранул. Это функционирующая фаза генетического аппарата. Причем фибриллы более активны, чем гранулы. Выделяют два типа хроматина:

Ядрышки (обычно 1-3 структур) располагаются в кариоплазме свободно и не имеют собственной оболочки, поэтому граница нечеткая. В их состав входят молекулы рРНК и ДНК, белки. Причем молекулы ДНК соединены с особыми белками – гистонами. Главной функцией выделяют синтез рибосомальной РНК, которые через поры попадают в цитоплазму для формирования субъединиц рибосом. Содержимое ядрышка можно разделить на фибриллярный и гранулярный компонент. Первый образован упакованными фибриллами, а второй похож на напоминает субъединицы рибосом.

Дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Это высокополимерные структуры, состоящие из сахара, азотистого основания и фосфорного остатка. Несмотря на схожее строение, выделяют следующие отличия:

Источник

Ядро (клетки)

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Ядро (лат. nucleus), органелла эукариотической клетки, содержащая генетическую информацию в форме молекул ДНК. В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на матрице ДНК. В ядре же синтезированные молекулы РНК подвергаются ряду модификаций, после чего выходят в цитоплазму. Сборка рибосом также происходит в ядре, в специальных образованиях, называемых ядрышками.

Содержание

Тонкая структура клеточного ядра

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Хроматин

Огромная длина молекул ДНК эукариот предопределила появление специальных механизмов хранения, репликации и реализации генетического материала. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Из этих белков построены нуклеосомы, структуры на которые намотаны нити молекул ДНК. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон H1, более крупный чем другие гистоны, связывается с ДНК в месте ее входа на нуклеосому. Нуклеосома вместе с H1 называется хроматосомой.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно, его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК находящаяся в гетерохроматине не транскрибируется, обычно это состояние характерно для незначащих или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки. Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфориллированием.

Считается, что в ядре существуют так называемые функциональные домены хроматина(ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». К сожалению вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

От цитоплазмы ядро отделено ядерной оболочкой, образованной за счёт расширения и слияния друг с другом цистерн эндоплазматической сети таким образом, что у ядра образовались двойные стенки за счёт окружающих его узких компартментов. Полость ядерной оболочки называется люменом или перинуклеарным пространством. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, образованной белками-ламинами, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Пора не является дыркой в ядре, а имеет сложную структуру, организованную несколькими десятками специализированных белков — нуклеопоринов. Под электронным микроскопом она видна как восемь связанных между собой белковых гранул с внешней и столько же с внутренней стороны ядерной оболочки.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Ядрышко

Ядрышко находится внутри ядра, и не имеет собственной мембранной оболочки, однако хорошо различимо под световым и электронным микроскопом. Основной функцией ядрышка является синтез рибосом. В геноме клетки имеются специльные участки, так называемые ядрышковые организаторы, содержащие гены рибосомной РНК (рРНК), вокруг которых и формируются ядрышки. В ядрышке происходит синтез рРНК РНК полимеразой I, ее созревание, сборка рибосомных субчастиц. В ядрышке локализуются белки, принимающие участие в этих процессах. Некоторые из этих белков имеют специальную последовательность — сигнал ядрышковой локализации (NoLS, от англ. Nucleolus Localization Signal). Следует отметить, самая высокая концентрация белка в клетке наблюдается именно в ядрышке. В этих структурах было локализовано около 600 видов различных белков, причем считается, что лишь небольшая их часть действительно необходима для осуществления ядрышковых функций, а остальные попадают туда неспецифически.

Под электронным микроскопом в ядрышке выделяют несколько субкомпартментов. Так называемые Фибриллярные центры окружены участками плотного фибриллярного компонента, где и происходит синтез рРНК. Снаружи от плотного фибриллярного компонента расположен гранулярный компонент, представляющий собой скопление созревающих рибосомных субчастиц.

Ядерный матрикс

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Эволюционное значение клеточного ядра

Основное функциональное отличие клеток эукариот от клеток прокариот заключается в пространственном разграничении процессов транскрипции (синтеза матричной РНК) и трансляции (синтеза белка рибосомой), что дает в распоряжение эукариотической клетки новые инструменты регуляции биосинтеза и контроля качества мРНК.

В то время, как у прокариот мРНК начинает транслироваться еще до завершения ее синтеза РНК-полимеразой, мРНК эукариот претерпевает значительные модификации (так называемый процессинг), после чего экспортируется через ядерные поры в цитоплазму, и только после этого может вступить в трансляцию. Процессинг мРНК включает несколько элементов.

Из предшественника мРНК (пре-мРНК) в ходе процесса, называемого сплайсингом вырезаются интроны — незначащие участки, а значащие участки — экзоны соединяются друг с другом. Причем экзоны одной и той же пре-мРНК могут быть соединены несколькими разными способами (альтернативный сплайсинг), так что один предшественник может превращаться в зрелые мРНК нескольких разных видов. Таким образом, один ген может кодировать сразу несколько белков.

Кроме того, интрон-экзонная структура генома, практически невозможная у прокариот (т.к. рибосомы смогут транслировать незрелые мРНК), дает эукариотам определенную эволюционную мобильность. Учитывая протяженность интронных участков, рекомбинация между двумя генами зачастую сводится к обмену экзонами. Благодаря тому, что экзоны часто соответствуют функциональным доменам белка, участки получившегося в результате рекомбинации «гибрида», зачастую сохраняют свои функции. В то же время у прокариот рекомбинация между генами невозможна без разрыва в значащей части, что безусловно уменьшает шансы на то, что получившийся белок будет функционален.

Источник

Строение и функция ядра в клетке: кратко

Строение ядра

Ядро – это важный структурный компонент эукариотической клетки, который содержит молекулы ДНК – генетическую информацию. Имеет округлую или овальную форму. Ядро хранит, передает и реализует наследственную информацию, а также обеспечивает синтез белка. Подробнее о клеточной организации, составе и функциях ядра животной или растительной клетки рассмотрим в таблице ниже.

Компонент ядра и выполняемая функция

Несмотря на различия в строении и функциях, все части клетки постоянно взаимодействуют друг с другом, их объединяет одна главная функция – обеспечение жизнедеятельности клетки, своевременное деление клетки и правильный обмен веществ внутри нее.

Строение и функции ядра клетки

Строение и работа всех функций живых организмов, растений, грибов, микроорганизмов — вся биологияБиология 5,6,7,8,9,10,11 класс, ЕГЭ, ГИАСтроение и работа всех функций живых организмов, растений, грибов, микроорганизмов — вся биологияСистема живого мира
Строение клеточной оболочки.
Клеточная оболочка ( цитоплазматическая оболочка ) – это поверхностный аппарат клетки, который выполняет важные функции, а потому имеет свои особенности.
Строение клеточной оболочки.

Ядро есть только у эукариотических клеток. При этом некоторые из них его утрачивают в процессе дифференцировки (зрелые членики ситовидных трубок, эритроциты). У инфузорий есть два ядра: макронуклеус и микронуклеус. Бывают многоядерные клетки, возникшие путем объединения нескольких клеток.

Однако в большинстве случаев в каждой клетке имеется только одно ядро.

Ядро клетки является самым крупным ее органоидом (если не считать центральные вакуоли клеток растений). Оно самое первое из клеточных структур, которое было описано учеными. Клеточные ядра обычно имеют шаровидную или яйцевидную форму.

Ядро регулирует всю активность клетки. В нем находятся хроматиды — нитевидные комплексы молекул ДНК с белками-гистонами (особенностью которых является содержание в них большого количества аминокислот лизина и аргинина).

ДНК ядра хранит информацию о почти всех наследственных признаках и свойствах клетки и организма. В период клеточного деления хроматиды спирализуются, в таком состоянии они видны в световой микроскоп и называются хромосомами.

Хроматиды в неделящейся клетке (в период интерфазы) не полностью деспирализованы.

Плотно спирализованные части хромосом называются гетерохроматином. Он располагается ближе к оболочке ядра. К центру ядра располагается эухроматин — более деспирализованная часть хромосом.

На нем происходит синтез РНК, т. е. идет считывание генетической информации, экспрессия генов.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Репликация ДНК предшествует делению ядра, которое, в свою очередь, предшествует делению клетки. Таким образом, дочерние ядра получают уже готовую ДНК, а дочерние клетки — готовые ядра.

Внутреннее содержимое ядра отделяется от цитоплазмы ядерной оболочкой, состоящей из двух мембран (внешней и внутренней).

Таким образом, ядро клетки относится к двумембранным органоидам. Пространство между мембранами называется перинуклеарным.

Внешняя мембрана в определенных местах переходит в эндоплазматическу сеть (ЭПС).

Если на ЭПС располагаются рибосомы, то она называется шероховатой. Рибосомы могут размешаться и на наружней ядерной мембране.

Во множестве мест внешняя и внутренняя мембраны сливаются друг с другом, образуя ядерные поры.

Их число непостоянно (в среднем исчисляются тысячами) и зависит от активности биосинтеза в клетке. Через поры ядро и цитоплазма обмениваются различными молекулами и структурами. Поры — это не просто дырки, они сложно устроены для избирательного транспорта. Их структуру определяют различные белки-нуклеопорины.

что делает ядро в клетке. Смотреть фото что делает ядро в клетке. Смотреть картинку что делает ядро в клетке. Картинка про что делает ядро в клетке. Фото что делает ядро в клетке

Из ядра выходят молекулы иРНК, тРНК, субчастицы рибосом.

В ядро через поры заходят различные белки, нуклеотиды, ионы и др.

Субчастицы рибосом собираются из рРНК и рибосомных белков в ядрышке(их может быть несколько).

Центральную часть ядрышка образуют специальные участки хромосом (ядрышковые организаторы), которые располагаются рядом друг с другом. В ядрышковых организаторах содержится большое количество копий кодирующих рРНК генов. Перед клеточным делением ядрышко исчезает и вновь образуется уже во время телофазы.

Жидкое (гелеобразное) содержимое клеточного ядра называется ядерным соком (кариоплазмой, нуклеоплазмой).

Его вязкость почти такая же как у гиалоплазмы (жидкое содержимое цитоплазмы), однако кислотность выше (ведь ДНК и РНК, которых в ядре большое количество, — это кислоты). В ядерном соке плавают белки, различные РНК, рибосомы.

Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

Классификация структурных элементов интерфазного ядра:

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название.

Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

• эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;

• гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы.

После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

По химическому строению хроматин состоит из:

• дезоксирибонуклеиновой кислоты (ДНК) 40 %;

• рибонуклеиновой кислоты (РНК) 1 %.

Ядерные белки представлены формами:

• щелочными или гистоновыми белками 80-85 %;

• кислыми белками 15-20 %.

Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии.

На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине.

В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.

Ядрышко — сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина.

В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены.

Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом — ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК.

В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

Микроскопически в ядрышке различают:

• фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);

• гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает.

По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.

Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ.

Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина.

При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм.

В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым.

Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда.

Гетерохроматин

Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость. ГЕТЕРОХРОМАТИН

(от гетеро… и хроматин), участки хроматина, находящиеся в конденсированном (плотно упакованном) состоянии в течение всего клеточного цикла. Интенсивно окрашиваются ядерными красителями и хорошо видны в световой микроскоп даже во время интерфазы.

Гетерохроматич. р-ны хромосом, как правило, реплицируются позже эухроматиновых и не транскрибируются, т. е. генетически весьма инертны. Ядра активных тканей и эмбриональных клеток большей частью бывают бедны Г. Различают факультативный и конститутивный (структурный) Г. Факультативный Г. присутствует только в одной из гомологичных хромосом. Пример Г. такого типа — вторая Х-хромосома у жен.особей млекопитающих, к-рая в ходе раннего эмбриогенеза инактивируется вследствие её необратимой конденсации.

Структурный Г. содержится в обеих гомологичных хромосомах, локализован преим. в экспонированных участках хромосомы — в центромере, теломере, ядрышко-вом организаторе (во время интерфазы он располагается неподалёку от ядерной оболочки), обеднён генами, обогащен сателлитной ДНК и может инактивиро-вать расположенные по соседству гены (т.

н. эффект положения). Этот тип Г. очень вариабелен как в пределах одного вида, так и в пределах близких видов. Он может влиять на синапсис хромосом, частоту индуцированных разрывов и рекомбинацию. Участкам структурного Г. свойственна адгезия (слипание) сестринских хроматид.

ЭУХРОМАТИН (от греч. eu — хорошо, полностью и хроматин), участки хромосом, сохраняющие деспирализованное состояние в покоящемся ядре (в интерфазе) и спирализующиеся при делении клеток (в профазе); содержат большинство генов и потенциально способны к транскрипции.

Э. отличается от гетерохроматина меньшим содержанием метилированных оснований и блоков повторяющихся последовательностей ДНК, большим количеством негистоновых белков и ацетилированных молекул гистонов, менее плотной упаковкой хромосомного материала, что, как полагают, особенно важно для активности Э. и делает его потенциально более доступным для ферментов, обеспечивающих транскрипцию.

Э. может приобретать свойства факультативного гетерохроматина — инактивироваться, что является одним из способов регуляции генной активности.

Строение и функции клеточного ядра

Ядро – обязательная часть эукариотической клетки. Главная функция ядра – хранение генетического материала в форме ДНК и передача ее дочерним клеткам при клеточном делении. Кроме того, ядро управляет белковыми синтезами, контролирует все процессы жизнедеятельности клетки.

( в растительной клетке ядро описал Р.Броун в 1831г., в животной – Т.Шванн в 1838г.)

Большинство клеток имеет одно ядро, обычно округлой формы, реже неправильной формы.

Размеры ядра колеблются от 1мкм (у некоторых простейших) до 1мм (в яйцеклетках рыб, земноводных).

Встречаются двуядерные клетки (клетки печени, инфузорий) и многоядерные (в клетках поперечно – полосатых мышечных волокон, а так же в клетках ряда видов грибов и водорослей).

Некоторые клетки (эритроциты) – безъядерные, это редкое явление, носит вторичный характер.

В состав ядра входят:

4)хроматин или хромосомы.

Хроматин находится в неделящемся ядре, хромосомы – в митотическом ядре.

В мембранах ядра имеются поры (3000-4000). Через ядерные поры происходит обмен различными веществами между ядром и цитоплазмой.

Кариоплазма (нуклеоплазма) представляет собой желеобразный раствор, который заполняет пространство между структурами ядра (хроматином и ядрышками).

Она содержит ионы, нуклеотиды, ферменты.

Ядрышко, обычно шаровидной формы (одно или несколько), не окружено мембраной, содержит фибриллярные белковые нити и РНК.

Ядрышки – не постоянные образования, они исчезают в начале деления клетки и восстанавливаются после его окончания. Ядрышки имеются только в неделящихся клетках.

В ядрышках происходит формирование рибосом, синтез ядерных белков. Сами же ядрышки образуются на участках вторичных перетяжек хромосом (ядрышковых организаторах). У человека ядрышковые организаторы находятся на 13,14,15,21 и 22 хромосомах.

Ядро клетки по своему строению относится к группе двухмембранных органоидов. Однако ядро настолько важно для жизнедеятельности эукариотической клетки, что обычно его рассматривают отдельно. Ядро клетки содержит хроматин (деспирализованные хромосомы), который отвечает за хранение и передачу наследственной информации.

В строении ядра клетки выделяют следующие ключевые структуры:

Кроме перечисленного в ядре содержатся различные вещества, субъединицы рибосом, РНК.

Строение наружной мембраны ядра клетки сходно с эндоплазматической сетью.

Часто внешняя мембрана просто переходит в ЭПС (последняя от нее как бы ответвляется, является ее выростом).

С внешней стороны на ядре располагаются рибосомы.

Внутренняя мембрана более прочная за счет выстилающей ее ламины.

Кроме опорной функции к этой ядерной выстилке прикрепляется хроматин.

Пространство между двумя ядерными мембранами называется перинуклеарным.

Мембрана ядра клетки пронизана множеством пор, соединяющих цитоплазму с кариоплазмой. Однако по своему строению поры ядра клетки не просто отверстия в мембране. В них содержатся белковые структуры (поровый комплекс белков), отвечающий за избирательную транспортировку веществ и структур. Пассивно через пору могут проходить только малые молекулы (сахара, ионы).

Хроматин следует считать главным компонентом ядра. В нем заключена наследственная информация, которая передается при каждом делении клетки, а также реализуется в процессе жизнедеятельности самой клетки.

Хроматин ядра клетки состоит их хроматиновых нитей. Каждая хроматиновая нить соответствует одной хромосоме, которая образуется из нее путем спирализации.

Чем сильнее раскручена хромосома (превращена в хроматиновую нить), тем больше она задействована в процессах синтеза на ней.

Одна и та же хромосома может быть в одних участках спирализована, а в других деспирализована.

Каждая хроматиновая нить ядра клетки по строению является комплексом ДНК и различных белков, которые в том числе выполняют функцию скручивания и раскручивания хроматина.

Ядра клеток могут содержать одно и более ядрышек. Ядрышки состоят из рибонуклеопротеидов, из которых в дальнейшем образуются субъединицы рибосом.

Здесь происходит синтез рРНК (рибосомальной РНК).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *