что делает реактивная мощность
Реактивная мощность — еще раз коротко о главном
Все чаще в различных изданиях и СМИ, в рамках информации о реализации Федерального закона от 23 ноября 2009 г. N 261-ФЗ «Об энергосбережении и о повышении энергетической эффективности…» встречается информация о борьбе с реактивной мощностью в сетевых компаниях и на промышленных предприятиях. Что же это за такое зло, что для борьбы с ним сетевыми компаниями тратятся сотни миллионов рублей, разрабатываются специальные долгосрочные целевые программы мероприятий по управлению реактивной мощностью в электрических сетях, ведутся агитации среди крупных потребителей электроэнергии на установку устройств по компенсации реактивной мощности. Так ли она важна и необходима эта компенсация?
Зачастую, многие потребители подсознательно полагают, что генерирующие компании поставляют два типа электрической энергии, так как оплачивают счета за потребленную активную и реактивную мощность, составляющие полной мощности выдаваемой генерирующими подстанциями. Хотя на самом деле понятие реактивной мощности хоть и общепринято и употребляемо, но не совсем корректно, так как физически реактивной мощности (именно в классическом понимании мощности, как отношения работы ко времени) не существует, так как никакой работы она не совершает.
Активная мощность — та часть электрической энергии, которая идет на совершение полезной работы и в процессе потребления преобразуется в другие типы энергии, например тепловую, механическую или световую.
Название реактивная мощность, по аналогии с реактивным сопротивлением, обусловлено способностью индуктивных и емкостных элементов накапливать и отдавать обратно в сеть, запасенную магнитную или электрическую энергию, и проявлять кажущиеся сопротивление только в цепях переменного тока. В то время как активное сопротивление зависит только от конкретного материала проводника.
Согласно общепринятому утверждению, под условным термином «реактивная мощность» понимают вторую составляющую полной мощности в сетях переменного тока, характеризующую интенсивность обмена/циркуляции электрической энергии между источником и подключенной к нему реактивной нагрузки (элементов индуктивности и/или конденсаторов), которая необходима только для расчетов определяющих влияние реактивных элементов на сеть.
Индуктивные (катушки в трансформаторах, дросселях, индукционных печах, двигателях и пр.) и емкостные (конденсаторные батареи) элементы практически не расходуют электроэнергии (без учета магнитного рассеивания и утечек в конденсаторах), хотя она и используется для создания электромагнитных и электрических/электростатических полей, но в процессе разряда возвращается обратно в сеть. Так как энергия циркулирует, то соответственно есть изменения тока и напряжения, которые можно посчитать в виде условной реактивной мощности используемой только для совершения данных преобразований.
Для электрических цепей в зависимости от подключаемого оборудования можно выделить три ситуации:
Рис. Диаграмма напряжения, тока и мощности для активной (резистивной) нагрузки.
Рис. Диаграмма напряжения, тока и мощности для индуктивной нагрузки.
Рис. Диаграмма напряжения, тока и мощности для емкостной нагрузки.
В реальности нагрузка имеет более-менее выраженную индуктивно-емкостную нагрузку (см. рис. ниже), зависящую от параметров самого оборудования. Из-за смещения фаз напряжения и тока уменьшается величина активной мощности, используемой для совершения полезной работы в системах с индуктивной нагрузкой, так как часть электрической энергии (реактивной мощности) будет циркулировать в энергосистеме и тратиться только на создание магнитных полей, не совершая ничего полезного, что в свою очередь приводит к увеличению тока необходимого для полноценной работы оборудования. В то же время, как известно, все проводники обладают активным сопротивлением, и циркуляция больших токов в системе будет приводить к их нагреву (величина нагрева, а соответственно и потерь, как известно, пропорциональна квадрату тока), а соответственно и к потерям электрической энергии.
Рис. Диаграмма напряжения, тока и мощности для индуктивно-емкостной нагрузки.
Для расчетов полной мощности применяется формула,
где, P — активная мощность, определяется по формуле,
Q — реактивная мощность, определяется по формуле,
U — напряжение, I — сила тока, ϕ — угол между напряжением и током.
Как было сказано выше, перетоки реактивной мощности в сети не выполняют полезной работы, при этом загружают источник, силовые линии, и все коммутационное оборудование, установленное между генерирующими станциями и конечными потребителями, а также нагревая кабели и линии высоковольтных передач, снижая тем самым их пропускную способность (с увеличением температуры растет сопротивление проводов) и создавая бесполезное тепло. Зачем же греть окружающую среду и еще платить за это деньги?
Помимо этого снижение пропускной способности и увеличение потерь из-за нагрева проводов ведет к значительным отклонениям напряжения, нормируемым в соответствии с ГОСТ 13109-97, что в конечном итоге негативно сказывается на:
Исходя из всего вышесказанного, решение проблем по компенсации реактивной мощности занимают одно из важнейших мест среди мероприятий направленных на повышение эффективности распределения, передачи и потребления электроэнергии. Ведь от их результатов зависит качественное электроснабжение, а также экономия средств по оплате за потребленную электроэнергию (активную и реактивную) и материальных ресурсов. Поэтому в зависимости от конкретной ситуации, все вопросы по компенсации реактивной мощности необходимо решать с учетом современных разработок и решений для данной области.
Основной безразмерной величиной, характеризующей преобладание реактивной составляющей в оборудование, является коэффициент мощности, который численно равен косинусу сдвига тока относительно приложенного к нагрузке напряжения или отношению потребляемой оборудованием активной мощности (Р), к полной (S).
Таким образом, многие предприятия и генерирующие/распределительные сетевые компании стремятся увеличить cos(ϕ) до 1, чтобы в значительной мере снизить величину потребляемой реактивной мощности. Как было приведено выше, в быту и промышленности в основном преобладает оборудование с индуктивным характером нагрузки, с отставанием тока от напряжения, поэтому используя устройства с емкостной нагрузкой, удается уменьшить сдвиг между током и напряжением в фазе, а соответственно добиться cos(ϕ), близкого к единице.
Этого можно достичь с минимальными затратами путем использования компенсирующих установок построенных на базе конденсаторов (конденсаторные установки КРМ, АУКРМ, батареи статических конденсаторов), более дорогих синхронных двигателей в режиме перевозбуждения или тиристорных схем с фильтрами, устанавливаемых непосредственно вблизи оборудования с преобладающей реактивной нагрузкой или группами, на распределительных подстанциях предприятия. Так создание электрической энергии с преобладающей емкостной характеристикой с генерирующих синхронными генераторами подстанций, в целом не целесообразно, ввиду тех же самых потерь при передаче и распределении электрической энергии.
В последнее время все более востребованными становятся конденсаторные установки АУКРМ, позволяющие производить более точную коррекцию коэффициента мощности с учетом изменения значений, потребляемой мощности от токов нагрузки, напряжения, времени суток.
При этом при формировании конденсаторной установки желательно обеспечивать максимально малый шаг регулирования, но с использованием минимального количества конденсаторов. В конечном итоге грамотный выбор определенного оборудования для компенсации реактивной мощности определяется на основании технико-экономических расчетов, характера преобладающей в сетях предприятия реактивной нагрузки, что позволит достигнуть положительного экономического эффекта при минимальных сроках окупаемости внедренного оборудования.
По материалам компании «Нюкон»
Что такое активная и реактивная мощность переменного электрического тока?
Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.
Мощность в цепи переменного электрического тока
Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.
Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.
В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.
Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.
Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.
При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.
Понятие активной мощности
Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).
Рассчитывается по формуле: P = U⋅I⋅cosφ,
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.
ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73
Понятие реактивной мощности
Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.
Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.
Обозначается эта величина латинской буквой Q.
ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).
Рассчитывается по формуле:
где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.
ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.
Емкостные и индуктивные нагрузки
Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.
Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.
ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.
Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.
ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.
Коэффициент мощности cosφ
Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.
Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.
ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.
Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.
Понятие полной мощности. Треугольник мощностей
Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.
Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.
ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).
Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.
Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.
Как найти активную, реактивную и полную мощности. Пример расчета
Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.
Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.
Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.
Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.
Как измеряют cosφ на практике
Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.
Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.
Как перевести амперы в ватты и обратно?
Как перевести амперы в киловаты?
Как рассчитать падение напряжения по длине кабеля в электрических сетях
Что такое коэффициент трансформации трансформатора?
Способы вычисления потребления электроэнергии бытовыми приборами
Что такое делитель напряжения и как его рассчитать?
Что такое реактивная мощность и как её рассчитать?
Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.
Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.
Что такое реактивная мощность?
Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.
Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.
Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.
При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.
На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.
К устройствам с индуктивными нагрузками относятся:
Ёмкостными сопротивлениями обладают конденсаторы.
Физика процесса
Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.
Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).
При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.
Рис. 1. Сдвиг фаз индуктивной нагрузкой
Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.
Важно запомнить:
Треугольник мощностей и cos φ
Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.
Рис. 2. коэффициент мощности
Применяя теорему Пифагора, вычислим модуль вектора S:
Отсюда можно найти реактивную составляющую:
Реактивная составляющая
Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.
Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.
Формулы
Поскольку реактивная мощность зависит от угла φ, то для её вычисления применяется формула: Q = UI×sin φ. Единицей измерения реактивной составляющей является вар или кратная ей величина – квар.
Активную составляющую находят по формуле: P = U*I×cosφ. Тогда
Зная коэффициент Pf (cos φ), мы можем рассчитать номинальную мощность потребителя тока по его номинальному напряжению, умноженному на значение силы потребляемого тока.
Способы компенсации
Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.
Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.
На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.
Рис. 3. Устройство компенсации
Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).
Рис. 4. Компенсация реактивной мощности с помощью конденсаторов
Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.
Нужны ли устройства компенсации в быту?
На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:
Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.
Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.
Экономический эффект от установки таких устройств ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15% средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не электроэнергию.
Попутно вы решите следующие вопросы:
Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.