что делает операционная система

Что такое операционная система и как она работает?¶

Цель конспекта — последовательно рассмотреть и объяснить принципы устройства и функционирования операционной системы, её основных компонентов и абстракций.

Введение¶

Операционные системы окружают нас повсюду – это основное программное обеспечение персональных компьютеров, серверов, мобильных устройств, сетевых устройств (роутеры, коммутаторы) и даже современных автомобилей (борт-компьютер), телевизоров и прочего. Перечислять можно очень долго, ведь они требуются практически в каждой компьютерной системе.

Любой компьютер представляет собой связанную совокупность: процессора, памяти и устройств ввода-вывода.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис. 1. Общее представление архитектуры компьютера

Например, процессор умеет выполнять только четыре базовых типа инструкции:

Получается, что непосредственное создание и управление сложными процессами (приложениями) на аппаратуре становится крайне неэффективным и неудобным. То есть, например, создать и запустить на исполнение программу-браузер исключительно с помощью данных инструкций становится крайне сложной задачей. Особенно при условии, что помимо этого процесса (браузера) существуют и другие процессы, которые также пользуются ресурсами вычислительной машины.

Возникает вопрос — Как заставить всё это слаженно и эффективно работать, сделав пользование компьютером удобным как для обычного человека, так и для прикладного программиста?

Чтобы ответить на этот вопрос более последовательно, немного заглянем туда, откуда всё начиналось.

Немного истории¶

На заре компьютерной эпохи, первые компьютеры представляли собой огромные блоки (занимавшие большие комнаты), в которых размещались основные его компоненты: процессор, память и устройства ввода-вывода. И всего можно было выделить два состояния, в котором, в реальном времени находится компьютерная система:

Важная идея! Так как вычисления производятся быстрее, чем непосредственный ввод-вывод данных, разработчикам пришла идея о том, что к ресурсам можно допускать не одного пользователя (процесс), а множество, предоставляя им способ независимо друг от друга загружать (ввод) и получать (вывод) данные через отдельные терминалы, чтобы более эффективно использовать ресурсы компьютера и вычислительные модули не простаивали в ожидании ввода/вывода.

Далее, термины: процесс, приложение идут как синонимы термину пользователь ресурсов.

Зачем нужна Операционная Система?¶

Существует три ключевых элемента операционной системы:

Фунции ОС¶

Основные абстракции ОС¶

Положение ОС в многоуровневой иерархии организации компьютера¶

Современный компьютер можно представить в виде иерархии уровней (от двух и более), где на каждом уровне выделяются свои абстракции и набор возможных функций.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис. 2. Основные уровни устройства ПК

Операционная система является одним из таких уровней и представляет собой интерфейс («прослойку») между пользователем ресурсов компьютера и самими ресурсами, управляющий взаимодействиями как между пользователь-ресурс, так и пользователь-пользователь, устройство-устройство.

В целом, общей схемой это можно отобразить так:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис. 3. Место ОС в компьютерной системе

Интерфейс — набор правил и средств взаимодействия двух систем. Иными словами способ взаимодействия.

Kernel space — адресное пространство ядра ОС, в котором процессы имеют привилегированный доступ к ресурсам компьютера и другим процессам.

User space — адресное пространство, отведённое для пользовательских процессов (приложений), то есть не имеющих привилегированный доступ к ресурсам.

Как операционная система загружается в компьютер?¶

Процесс загрузки операционной системы и вообще компьютера имеет несколько этапов, основные из которых:

Что делает ядро ОС?¶

Ядро ОС – центральная часть операционной системы. По сути, это и есть ОС.

Это реакционный механизм, то есть его работа заключается исключительно в реакции на какие-либо события для их последующей обработки.

Процессорное время измеряется в тиках или секундах. Часто бывает полезно измерение процессорного времени в процентах от мощности процессора, которое называется загрузкой процессора.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Прерывания¶

Эта часть больше относится непосредственно к аппаратной части, но этот механизм стоит освятить, так как именно это основной аппаратный механизм реализации ОС.

Прерывание – сигнал остановки последовательного выполнения программы, для обработки запроса или реакции на событие.

Чтобы получить код обработки прерывания, в памяти расположена специальная таблица обработчиков прерываний, в которой для каждого типа прерывания содержится указатель на тот участок памяти, где расположен соответствующий код обработки данного прерывания.

Инициализация данной таблицы первично осуществялется BIOS’ом в соответствии с архитектурой процессора. После, её инициализирует операционная система для дополнения этой таблицы какими-либо своими прерываниями.

Как приложения взаимодействуют с ОС?¶

Взаимодействие процессов с ОС осуществляется с помощью системных вызовов.

Механизм системных вызовов — это интерфейс, который предоставляет ядро ОС (kernel space) пользовательским процессам (user space).

Системный вызов – программное прерывание, обращение пользовательского процесса к ядру операционной системы для выполнения какой-либо операции.

Например, чтобы выполнить обычное действие, с точки зрения прикладного программиста, – вывод строки в консоль, необходимо загрузить исполнимый код в оперативную память и передать его процессору. С помощью системных вызовов, запускающий процесс (уже запущенный процесс, из которого вызывается новый процесс — одни процессы порождают другие) обращается к соответствующим сервисам ОС и передаёт им управление для выполнения этих функций.

То есть с помощью системных вызовов выполняются те рутинные действия, которые раньше осуществлялись вручную, — загрузка кода программы в память, передача его на исполнение процессору и прочее.

Схема организации ОС расширяется добавлением интерфейса для взаимодействия приложений с ядром ОС — механизмом системных вызовов:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 4. Интерфейс системных вызовов

Как оборудование взаимодействует с ОС?¶

Оборудование взаимодействует с ОС с помощью аппаратных прерываний. И одна из функций ОС — абстрагирование оборудования.

Что это значит?¶

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 5. Интерфейс драйверов

Сервисы ОС¶

Функции ОС заключены в её сервисах (модулях). Реализация организации которых зависит от архитектуры ядра. Рассмотрим на примере монолитного ядра:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 6. Основные компоненты ОС

Основные¶

Как говорилось в части о загрузке ОС, реализация планировщика осуществляется с помощью прерывания по таймеру — каждый квант времени происходит прерывание, которое передаёт управление ОС и она анализирует состояние всех процессов и что с каким процессом сделать: запустить, приостановить, завершить или изменить приоритет.

Дополнительные¶

Основные абстракции¶

Процесс¶

Компьютерная программа сама по себе — лишь пассивная последовательность инструкций. В то время как процесс — непосредственное выполнение этих инструкций.

В рамках ОС, это абстракция, которая предоставляет иллюзию персональной машины. То есть то, что данный исполнимый код полностью владеет всеми вычислительными ресурсами машины.

Состояние (контекст) процесса¶

Изнутри, процесс можно условно разделена на четыре части: Stack, Heap (кучу), Text (код) и данные (Data).

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 7. Сегменты памяти процесса

Состояния исполнения¶

Когда процесс выполняется, он проходит через разные состояния. Эти этапы могут различаться в разных операционных системах.

Общая картина выглядит так:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 8. Состояния исполнения процесса

Информация о процессе¶

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 9. Process Control Block

Информацию о процессах в целом, ОС хранит в специальной таблице процессов.

Поток¶

Процесс может делиться на потоки (threads). Они обеспечивают параллелизм, то есть одновременное исполнение нескольких потоков инструкций, на уровне программы.

Поток выполнения (нить, thread) — последовательность исполнения инструкций. Ход исполнения программы**.

Процесс является контейнером ресурсов (адресное пространство, процессорное время и тд), а поток – последовательность инструкций, которые исполняются внутри этого контейнера.

Реализация потоков выполнения и процессов в разных операционных системах отличается друг от друга, но в большинстве случаев поток выполнения находится внутри процесса.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 10. Многопоточный процесс

Потоки, существующие в рамках одного процесса, в его адресном пространстве, могут совместно использовать ресурсы процесса, например такие как память или файл. Тогда как процессы не разделяют этих ресурсов, так как каждый существует в своём адресном пространстве.

Также поток называют легковесный процесс.

Сегодня потоки широко применяются в работе серверов и многопроцессорных устройств с общей памятью.

Рассмотрим на примере утилиты htop.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 11. Вывод утилиты мониторинга процессов htop

PID — Process ID; Уникальное число идентификатор для каждого процесса

TGID — Tread Group ID; Индентификатор группы потоков

Чем хороши потоки¶

Это очень широкое и многогранное понятие. Но если выделить наиболее общее, то получится, что файл — это универсальный системный интерфейс для обращения к тем или иным данным.

А файловая система — это система имён. То есть возможность выделять те или иные объекты данных и присваивать им имена, а также выделять иерархию.

По другому, файл и файловую систему можно также представить как структуру данных и связи между этими структурами.

Реализация многозадачности¶

Осуществляется при помощи следующих механизмов:

Переключение контекста¶

Контекст процесса — это состояние регистров, при его выполнении на процессоре.

Но происходит прерывание и «процесс 1» снимается с выполнения на процессоре, чтобы вместо него выполнялся «процесс 2». Следовательно, нужно заполнить регистры уже теми данными, что относятся к «процессу 2».

Однако, «процесс 1» ещё не выполнился полностью, и для дальшейнего исполнения ему нужны те данные, что хранились в регистрах при прерываний, то есть необходим его контекст. Операционная система должна обеспечивать подобные смены контекстов без потери данных.

В целом, смена контекста происходит между состояниями «Готов», «Ожидает» и «Исполняется».

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Критические секции и блокировки¶

Одна из основных проблем с которыми может столкнуться такая система с вытесняющей многозадачностью — порядок доступа процессов к их общим ресурсам.

Возникают, так называемые, критические секции – участки исполняемого кода программы, в которых производится доступ к общему ресурсу (данным или устройству), который не должен быть одновременно использован более чем одним потоком выполнения.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 12. Критические секции в потоках процесса

Может возникнуть такая ситуация, когда один поток, «потребитель», начинает использовать данные, которые должен подготовить другой поток, «производитель», но этот производитель ещё не закончил их подготовку и снялся с исполнения. Таким образом, «потребитель» использует некорректные данные, что с высокой долей вероятности приведёт к ошибке.

Данная проблема решается с помощью механизма блокировок – когда поток, получивший доступ к ресурсу, блокирует его, не давая другим потокам пользоваться этим захваченным ресурсом до разблокировки. То есть, если один поток хочет захватить (заблокировать) ресурс, а он уже занят другим потоком, то первый будет ожидать пока этот другой поток-владелец сам не освободит этот ресурс.

Все эти механизмы обеспечиваются операционной системой

Чтобы лучше это понять, можно обратиться к аналогии с туалетом — им может пользоваться только один человек. Если другой хочет им воспользоваться, то ему нужно дождаться когда его освободит уже им пользующийся.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Рис 13. Аналогия пробки на перекрёстке с Deadlock

Deadlock — ситуация, при которой несколько потоков находятся в состоянии ожидания ресурсов, занятых друг другом, и ни один из них не может продолжать свое выполнение.

Пример Deadlock’a на псевдокоде¶

ШагПоток 1Поток 2
0Хочет захватить A и B, начинает с AХочет захватить A и B, начинает с B
1lock(A) — Захват Аlock(B) — Захват B
2lock(B) — Ожидает освобождения ресурса Block(A) — Ожидает освобождения ресурса A
DEADLOCK –> Далее код не выполнится, так как произошел Deadlock в коде выше
nunlock(A) — освобждение Aunlock(B) — освобждение B
n+1unlock(B) — освобждение Bunlock(A) — освобждение A

Схематично, Deadlock можно изобразить так:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Адреса и управление памятью¶

Тема адресации очень сложна, поэтому здесь я лишь проведу краткий обзор общей технологии.

Чтобы отобразить логический адрес в физический, существует специальный аппаратный механизм.

Начав с базовой архитектуры и небольшой истории развития компьютера, мы разобрали причины появления такого комплекса программ как операционная система и выделили главную её цель – обеспечение согласованного доступа к ресурсам компьютера множеству пользователям этих ресурсов, а также управление как самими ресурсами, так и пользователями.

Основные механизмы (сервисы)¶

Рассмотрели основные механизмы реализации этой цели: Scheduler (планировщик), Inter Process Communication (межпроцессное взаимодействие), Memory manager (управление памятью) и другие.

Абстракции¶

Ряд абстракций, которые вводит ОС: Process (процесс), Thread (поток исполнения), File (файл).

Заключение¶

Ух, и вот наконец-то я закончил писать этот материал. Надеюсь, вам было интересно и полезно.

Если вы хотите как-то дополнить материал, дать критику по его содержанию или структуре – пожалуйста, пишите в Issue данного репозитория поднимая ту или иную тему для обсуждения и доработки.

Также, вы можете сделать Fork данного репозитория и после внести свои дополнения с помощью Pull Request. Спасибо за внимание!

Источник

Разбираемся, как работают операционные системы

Linux, Windows, Mac OS? Зачем они нужны? Понимание того, как работают операционные системы, поможет создавать качественные приложения.

Есть несколько причин, почему программистам стоит знать, как работают операционные системы. Одна из них – чтобы понимать, как работают программы. Представьте: вы пишете код, который кажется рабочим, но программа тормозит. Что делать? Можно попробовать разобраться с ограничениями операционной системы, но вы ведь не умеете!

Если стремитесь построить карьеру программиста, стоит понять, как работают операционные системы. Например, можно изучить курс «Введение в операционные системы» от Georgia Tech. В нем рассказывается, как работают ОС: механизмы работы, параллельное программирование (потоки и синхронизация), взаимодействие между процессами, распределённые ОС.

Осветим 10 наиболее важных принципов, о которых говорилось в курсе Udacity, и разберемся, как же работают операционные системы.

Что такое операционная система

Это первое, о чем нужно задуматься, если вы решили разобраться, как работают операционные системы. ОС представляют собой набор программного обеспечения. Это ПО управляет компьютерным оборудованием и предоставляет техническую базу для программ. А ещё они управляют вычислительными ресурсами и обеспечивают защиту. Главное, что у них есть, – это доступ к управлению компонентами компьютера.

Файловая система, планировщик и драйверы – всё это основные инструменты работы ОС.

Существует три ключевых элемента операционной системы:

Кроме того, есть два основных принципа проектирования операционных систем:

Теперь подробнее разберём глобальные концепции, которые помогут сформировать понимание того, как работают операционные системы.

Процессы и управление

Процесс – не что иное, как исполнение программы. Так как программа записана в виде последовательности действий в текстовый файл, процессом она становится только при запуске.

Загруженная в память программа может быть условно разделена на четыре части: стек, кучу, контекст и данные.что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Когда процесс выполняется, он проходит через разные состояния. Эти этапы могут различаться в разных операционных системах.

Общая картина выглядит так:что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Немного терпения: мы уже близки к пониманию того, как работают операционные системы 😉

Блок управления процессов (Process Control Block) – это структура данных, поддерживаемая операционной системой для каждого процесса. PCB имеет идентификатор PID. Именно PCB хранит всю информацию, необходимую для отслеживания процесса.что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Потоки и параллелизм

Поток (нить, thread) – это ход исполнения программы. Он также имеет свой program counter, переменные, стек.

Потоки одной программы могут работать с одними данными, а взаимодействовать между собой через код.

Поток – это легковесный процесс. Вместе они обеспечивают производительность приложений и ОС за счет параллелизма на уровне программы.

Каждый поток относится к какому-то процессу и не может существовать без него. Сегодня потоки широко применяются в работе серверов и многопроцессорных устройств с общей памятью.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Потоки имеют два уровня реализации:

В первом случае ядро ​​управления потоками ничего не знает о существовании потоков вообще. А библиотека потоков просто содержит код для создания и уничтожения потоков, а также передачи сообщений и данных между ними для планирования выполнения потоков и сохранения (восстановления) контекстов потоков.что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Во втором случае ядро выполняет создание потоков, а ещё планирование и управление в пространстве ядра. Заметим, что потоки ядра обычно медленнее, чем потоки пользователей.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Планирование

Планировщик – это часть менеджера процессов, которая ответственна за переключение между процессами и выбор очереди по какой-либо стратегии.

ОС поддерживает все блоки управления процессом (PCB) в очередях планирования процесса:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

ОС может использовать разные методы реализации для управления очередями (FIFO, Round Robin, Priority). Планировщик ОС определяет, когда и как перемещать процессы между готовыми и запущенными очередями (могут иметь только одну запись на ядро ​​процессора в системе). На приведенной выше диаграмме он был объединен с процессором.

Модели состояния делятся на активные и неактивные:

Переключение контекста – это механизм сохранения (в PCB) и восстановления контекста процессора с ранее запущенного промежутка времени. При использовании этого метода, коммутатор контекста позволяет использовать один процессор для нескольких действий одновременно. Кстати, контекстное переключение является неотъемлемой частью многозадачной операционной системы.

Когда планировщик переключает процессор с одного процесса на другой, состояние из текущего запущенного процесса сохраняется в блоке управления. Затем состояние для следующего процесса загружается из своего PCB в регистры процессора. Только потом второй процесс может быть запущен.

При переключении следующая информация сохраняется для последующего использования: счетчик программы, информация планировщика, значение регистра базы и лимита, используемый в настоящее время регистр, измененное состояние, информация о состоянии ввода и вывода, учетная информация.

Управление памятью

Ещё одна важная часть – та, что отвечает за все операции по управлению первичной памятью. Существует менеджер памяти, который обрабатывает все запросы на получение памяти и высвобождение. Он же следит за каждым участком памяти, независимо от того, занят он или свободен. И он же решает, какой процесс и когда получит этот ресурс.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Адресное пространство процесса – набор логических адресов, к которым программа обращается в коде. Например, если используется 32-битная адресация, то допустимые значения варьируются от 0 до 0x7fffffff, то есть 2 Гб виртуальной памяти.

Операционная система заботится о том, чтобы сопоставить логические адреса с физическими во время выделения памяти программе. Нужно также знать, что существует три типа адресов, используемых в программе до и после выделения памяти:

Виртуальные и физические адреса одинаковы как в процессе загрузки, так и во время компиляции. Но они начинают различаться во время исполнения.

Набор всех логических адресов, которые создала программа, называется логическим адресным пространством. Набор всех физических адресов, соответствующих этим логическим адресам, называется физическим адресным пространством.

Хотите разобраться подробнее в том, как работают операционные системы? Посмотрите соответствующие книги в нашем Телеграм-канале.

Межпроцессорное взаимодействие

Существует два типа процессов: независимые и взаимодействующие. На независимые не оказывается влияние процессов сторонних, в отличие от взаимодействующих.

Можно подумать, что процессы, которые работают независимо, выполняются эффективнее, но зачастую это не так. Использование кооперации может повысить скорость вычислений, удобство и модульность программ.

Межпроцессная коммуникация (IPC) – это механизм, который позволяет процессам взаимодействовать друг с другом и синхронизировать действия. Связь между этими процессами может рассматриваться как сотрудничество.

Процессы могут взаимодействовать двумя способами: через общую память или через передачу сообщений.

Метод использования общей памяти

Допустим, есть два процесса: исполнитель (производитель) и потребитель. Один производит некоторый товар, а второй его потребляет. Эти два процесса имеют общее пространство или ячейку памяти, известную как «буфер». Там хранится элемент, созданный исполнителем, оттуда же потребитель получает этот элемент.

Однако у этих версий есть как минимум две значимые проблемы: первая известна как проблема безграничного буфера: исполнитель может продолжать создавать элементы без ограничений на размер буфера. Вторая заключается в том, что исполнитель, заполнив буфер, переходит в режим ожидания.что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

В задаче с ограниченным буфером у исполнителя и потребителя будет общая память. Если общее количество произведенных товаров равно размеру буфера, то исполнитель будет ждать их потребления.

Аналогично потребитель сначала проверит наличие товара, и если ни один элемент не будет доступен, придётся ждать его освобождения.

Метод анализа сообщений

С помощью этого метода процессы взаимодействуют друг с другом без использования общей памяти. Допустим, есть два процесса, p1 и p2, которые хотят взаимодействовать друг с другом. Они работают следующим образом:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Размер сообщения может быть фиксированным или переменным. Проектировщикам ОС проще работать с сообщениями фиксированного размера, а программистам – переменного. Стандартное сообщение состоит из двух частей – заголовка и тела.

Управление вводом и выводом

Одной из важнейших задач операционной системы является управление различными устройствами ввода и вывода вроде мыши, клавиатуры, дисководов, etc.

Система ввода и вывода принимает запрос приложения на ввод или вывод данных, а затем отправляет его на соответствующее физическое устройство. После возвращает приложению полученный ответ. Устройства ввода и вывода можно разделить на две категории:

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

ЦПУ должен иметь способ передачи информации на устройство ввода-вывода и обратно. И есть три способа сделать это:

Особые, неуниверсальные инструкции процессора, внедренные специально для контроля устройств ввода-вывода. Они позволяют отправлять данные на устройство и считывать их оттуда.

Когда используется ввод-вывод с отображением памяти, одно и то же адресное пространство разделяется памятью и устройствами ввода-вывода. Устройство подключается непосредственно к ячейкам памяти так, чтобы можно было передавать блок данных без применения ЦПУ.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Медленные устройства, такие как клавиатуры, генерируют прерывания ЦПУ после передачи каждого байта. Если бы быстрые устройства работали похожим образом, то ОС бы тратила большую часть времени впустую, на обработку этих прерываний. Поэтому для снижения нагрузки обычно используется прямой доступ к памяти (DMA).

Это означает, что ЦПУ предоставляет модулю ввода и вывода полномочия для чтения или записи в память. Сам модуль управляет обменом данными между основной памятью и устройством ввода-вывода. ЦПУ участвует в начале и конце передачи, а прерывается только после полной передачи блока.

Организация прямого доступа к памяти требует специального оборудования, называемого контроллером DMA (DMAC). Он управляет передачей данных и доступом к системной шине. Контроллеры запрограммированы с указателями источника и места назначения, счетчиками для отслеживания количества переданных байтов и прочими настройками.

Виртуализация

Технология, которая позволяет создавать несколько сред или выделенных ресурсов из единой физической аппаратной системы называется виртуализация

Программное обеспечение, гипервизор, напрямую подключается к этой аппаратной системе и позволяет разбить ее на отдельные, безопасные среды – виртуальные машины. По идее, гипервизор должен аппаратные ресурсы между виртуальными машинами так, чтобы процессы выполнялись быстрее.

Физическая машина с гипервизором называется хостом, а виртуальные машины, которые используют ресурсы данного хоста – гостями. Для них ангаром ресурсов являются процессор, память, хранилище. Для получения доступа к этим ресурсам операторы управляют виртуальными экземплярами.

В идеале, все связанные виртуальные машины управляются с помощью единой веб-консоли управления виртуализацией. Она нужна, чтобы ускорять работу. Виртуализация позволяет определить, сколько вычислительной мощности и памяти выделять виртуальным машинам. Кроме того, так как виртуальные машины технически не связаны между собой, это повышает безопасность сред.

Проще говоря, виртуализация создает дополнительные мощности для выполнения процессов.

Типы виртуализации

Система файловой дистрибуции

Распределенная файловая система – это клиентское или клиент-серверное приложение, которое позволяет получать и обрабатывать данные. Они хранятся на сервере, как если бы они находились на персональном компьютере. Когда пользователь запрашивает файл, сервер отправляет ему копию запрашиваемого файла, который кэшируется на компьютере пользователя во время обработки данных, а затем возвращается на сервер.

что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Бывает так, что за одними и теми же данными одновременно обращаются сразу несколько пользователей. Для этих целей сервер должен иметь механизм организации обновлений, чтобы клиент всегда получал самую актуальную версию данных. Распределенные файловые системы обычно используют репликацию файлов или баз данных для защиты от сбоев.

Сетевая файловая система Sun Microsystems (NFS), Novell NetWare, распределенная файловая система Microsoft и DFS от IBM являются примерами распределенных файловых систем.

Распределенная общая память

Распределенная общая память (DSM) – это компонент управления ресурсами распределенной операционной системы. В DSM доступ к данным осуществляется из общего пространства, аналогично способу доступа к виртуальной памяти. Данные перемещаются между дополнительной и основной памятью, а также между разными узлами. Изменения прав собственности происходят, когда данные перемещаются с одного узла на другой.что делает операционная система. Смотреть фото что делает операционная система. Смотреть картинку что делает операционная система. Картинка про что делает операционная система. Фото что делает операционная система

Преимущества распределенной общей памяти:

Облачные вычисления

Всё больше процессов переходит в облако. По сути, облачные вычисления – это своего рода аутсорсинг компьютерных программ. Используя облачные вычисления, пользователи могут получать доступ к программному обеспечению и приложениям из любого места. Это означает, что им не нужно беспокоиться о таких вещах, как хранение данных и питание компьютера.

Традиционные бизнес-приложения всегда были очень сложными, дорогими в обслуживании – нужна команда экспертов для установки, настройки, тестирования, запуска, защиты и обновления. Это одна из причин, почему стартапы проигрывают корпорациям.

Используя облачные вычисления, вы передаёте ответственность за аппаратное и программное обеспечение опытным специалистам, таким как Salesforce и AWS. Вы платите только за то, что вам нужно, апгрейд платежного плана производится автоматически по мере ваших потребностей, а масштабирование системы протекает без особых сложностей.

Приложения на базе облачных вычислений могут работать эффективнее, дольше и стоить дешевле. Уже сейчас компании используют облачные приложения для множества приложений, таких как управление отношениями с клиентами (CRM), HR, учет и так далее.

Итоги

В заключение хочется ещё раз вернуться к тому, зачем вообще разбираться в том как работают операционные системы. Операционная система – это «мозг», который управляет входными, обрабатываемыми и выходными данными. Все остальные компоненты также взаимодействуют с операционной системой. Понимание того, как работают операционные системы, прояснит некоторые детали и в других компьютерных науках, ведь взаимодействие с ними организуется именно средствами ОС.

Разобрались, как работают операционные системы? Вот ещё несколько интересных статей на тему:

Источник: Как работают операционные системы: 10 концептов, которые нужно знать разработчикам on Medium.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *