что делает кислород в клетке
Что делают клетки, когда им нечем дышать
Могут ли клетки «измерять» количество кислорода? Зачем им это нужно? И как они реагируют в зависимости от его содержания? Долгое время механизм адаптации животной клетки к различной концентрации кислорода в окружающей среде был не понятен. Ясность в эти вопросы внесли работы Питера Рэтклифа, Уильяма Келина-младшего и Грегга Семенцы, которые в 2019 году удостоились Нобелевской премии по физиологии и медицине за исследования этого механизма. Что значит эта работа для современной науки и какие возможности для разработки новых стратегий в борьбе с раком и другими болезнями она открывает, рассказывает Екатерина Умнякова, старший научный сотрудник ФГБНУ «Институт экспериментальной медицины». Лекция ученого состоялась накануне в Центральной библиотеке имени Лермонтова в рамках проекта «Нобелевка в Открытой гостиной 2019».
Почему мы не можем жить без кислорода
Все знают, что кислород — важный химический элемент для всего живого. В атмосфере содержится до 21% О2, и жизнь и для нас, и для животных, которые населяют нашу планету, без него фактически не представляется возможной.
Но почему мы без него не можем? Дело в том, что под воздействием этого важнейшего газа происходит конвертирование энергии. Насколько бы полезной и вкусной ни была наша еда, мы не можем использовать ее, не преобразовав в те формы, благодаря которым мы «расплатимся» за энергетические процессы внутри нас. Грубо говоря, наши клетки не умеют воспринимать еду, которую мы видим у себя на столе. Они могут получать энергию в форме молекулы АТФ (аденозинтрифосфат). Это, своего рода, энергетическая валюта нашего организма — все в итоге сводится к ней. Наш организм получает энергию в виде этой молекулы. И чтобы осуществить какие-то процессы, тоже затрачивается АТФ.
Под действием кислорода происходит выработка большого количества АТФ. Без кислорода это тоже возможно, но этот процесс идет гораздо менее эффективно и этого не хватит, чтобы обеспечить нашу жизнедеятельность. Да, конечно, есть много живых организмов, которым кислород не нужен — они нашли для себя другой окислитель, который можно использовать, и прекрасно себя чувствуют. Мы так не умеем, и я думаю, вряд ли когда-либо сумеем.
Без АТФ невозможно существование клеток, поэтому давно было понятно, что каким-то образом они должны реагировать на недостаток кислорода. Но до работ Питера Рэтклифа, Уильяма Келина и Грегга Семенцы было неясно, как именно наши клетки понимают, что в какой-то момент кислорода в среде становится недостаточно. Примечательно, что эти ученые представляют довольно разные области. Но, работая в своих направлениях, они параллельно пришли к одному и тому же и смогли изучить эти механизмы.
Лауреаты Нобелевской премии по физиологии и медицине Уильям Келин-младший, Питер Рэтклиф и Грегг Семенца. Источник: nobelprize.org
С чего все началось
Как известно, в эритроцитах находится гемоглобин, и именно он связывает кислород и доставляет его к тканям. Но здесь необходимо упомянуть о таком гормоне, как эритропоэтин. Он выбрасывается в кровь почками (некоторым образом его могут синтезировать также клетки печени) и служит сигналом для организма, чтобы вырабатывалось большее количество эритроцитов. Это, в свою очередь, приводит к тому, что ткани и клетки больше снабжаются кислородом.
Исследователи, которым была присуждена Нобелевская премия по физиологии и медицине в 2019 году, как раз изучали, как происходит образование этого гормона в организме, а именно — в каких случаях запускается его синтез. Грегг Семенца обнаружил регуляторный элемент — энхансер (небольшой участок ДНК, который после связывания с ним факторов транскрипции стимулирует транскрипцию с основных промоторов гена или группы генов — прим.ред.), который усиливает производство эритропоэтина. Параллельно такую работу проводил и Питер Рэтклиф.
Послебыло обнаружено, что именно с этим регуляторным элементом связывается какой-то белковый фактор, Грег Семенца назвал его HIF-фактор (Hypoxia-inducible factor). Далее выяснилось, что этот белок на самом деле не один. HIF состоит из двух частей: HIF-alpha, содержание которого зависит от концентрации кислорода, и HIF-beta, содержание которого не зависит от концентрации кислорода.
Таким образом, ученые обнаружили, что есть последовательность, с которой связывается регуляторный фактор и которая запускает гены в ответ на недостаток кислорода. В дальнейшем они показали, что это касается не только эритропоэтина, этот процесс запускается повсеместно, поскольку всем клеткам жизненно важно отвечать на недостаток кислорода.
Гемы белка гемоглобина. Источник: shutterstock.com
«Миксер для белков», «метки смерти» и HIF: как наш организм запускает или не запускает программу по выживанию
В наших клетках есть специальная молекулярная машина — протеасома. Фактически она работает как «миксер для белков»: обнаруживается белок, который по каким-то причинам уже не нужен, он получает «метки смерти» (не каждый белок отправляется в «миксер»), после в протеасоме его размолачивает на последовательности, и далее из этих аминокислот можно построить уже что-то другое. Уильям Келин обнаружил, что, когда кислорода достаточно, с HIF-alpha так и происходит.
Стоит отметить, что до исследования, связанного с HIF, Уильям Келин работал с другим объектом: он занимался исследованием довольно редкого синдрома под названием болезнь Гиппеля–Линдау. Ученый обнаружил, что при нарушении работы гена VHL (Von Hippel–Lindau) запускалось образование различных опухолей, как правило, это были опухоли спинного, головного мозга. Таким образом стало понятно, что этот ген очень важен для того, чтобы опухоли не развивались.
Также в процессе исследования обнаружилось, что в организме людей, у которых была нарушена работа белка, кодируемого этим геном, также было много различных продуктов, которые запускают фактор HIF. То есть он есть у них в больших количествах, и при этом никуда не убирается организмом, даже несмотря на нормальное количество кислорода в среде. Это натолкнуло на мысль, что VHL и HIF связаны. Эту загадку ученые разгадывали уже совместно, и вот к чему они пришли.
Если в среде недостаточно кислорода, то HIF-фактор уходит в ядро и связывается с той самой регуляторной последовательностью, которую обнаружил Грегг Семенца. Таким образом, запускается работа генов, которые нужны при ответе на гипоксию – низкое содержание кислорода в среде.
В случае же нормального содержания кислорода HIF-alpha разрушается. Как это происходит? Этот фактор имеет две аминокислоты, которые в присутствии кислорода и фермента пролилгидроксилазы преобразуются. В этом процессе задействованы очень сложные химические реакции, которые были расшифрованы этими тремя учеными. После этого, если у HIF-alpha появляются две этих гидроксильные группы, он может взаимодействовать с белком VHL. VHL-белок, в свою очередь, позволяет «меткам смерти» прикрепиться к фактору HIF1-alpha, и это, в свою очередь, отправляет его на разрушение в протеасому. Так что при нормальном содержании кислорода этот фактор не работает. И действительно, зачем? Ведь в этом случае не нужно отвечать на гипоксию и экстренно запускать программу по «выживанию».
Что еще показали ученые
Какие еще гены, помимо эритропоэтина, регулируются этим фактором? Это гены, которые запускаются при ангиогенезе, то есть при образовании и росте сосудов. Кроме того, это характерно для всех ферментов, которые участвуют в метаболизме. И наконец, это те гены, которые тем или иным образом способствуют выживанию или, наоборот, смерти клетки.
При активации генов, которые находятся под контролем фактора HIF-alpha, происходит усиление процессов гликолиза: глюкоза расщепляется, что в итоге дает нам энергию, или, иными словами, ту самую АТФ, которая нужна клетке. В нормальных условиях клетка может получить 36 молекул, а без кислорода — всего лишь две. То есть в таких условиях гены под контролем HIF-фактора пытаются сделать хоть что-то.
Дифференцировка клеток, превращение здоровых клеток в опухолевые. Источник: shutterstock.com
HIF-фактор может служить защитой от гибели клетки, если организм находится в условиях гипоксии короткое время. Но, если процесс хронический, они, напротив, запускают гибель клетки.
На что могут повлиять эти открытия на практике
На практике эти результаты открывают новые возможности по дальнейшему изучению адаптации организма к условиям, для которых характерно низкое содержание кислорода. Это не только высокогорье или морские глубины, но и космос.
Кроме того, это может стать причиной серьезного пересмотра патогенеза многих заболеваний. Учитывая новые знания, можно более эффективно лечить заболевания, связанные с нарушением снабжения органов и тканей кислородом. Можно также улучшить состояния пожилых людей, которые не могут в полной мере ответить на гипоксию тканей.
Оксигенотерапия повреждает микробиом легких: новое звено патогенеза Covid-19
Несмотря на то, что легкие считаются относительно «чистыми и свободными» от бактерий, в них существует определенный баланс микробиоты, который может нарушаться при проведении оксигенотерапи
Одним из ключевых признаков Covid-19 является одышка, которая вызывается значительным снижением уровня кислорода в крови. Во время госпитализации такие пациенты получают оксигенотерапию для нормализации уровня кислорода.
Несмотря на то, что легкие считаются достаточно «чистыми и свободными» от бактерий, в них существует определенный баланс микробиоты. Новое исследование указывает на то, что оксигенотерапия может негативным образом воздействовать на этот баланс.
«Кислород в избыточном виде является токсином. Если поместить лабораторное животное в среду с 100% кислородом, то оно погибнет в течение 5 дней, при этом будут развиваться повреждения легких, схожих с таковыми при Covid-19 или легочной недостаточности другой этиологии», – рассуждают авторы исследования.
Пациенты в интенсивной терапии получают высокие дозы кислорода на протяжении длительного времени. Ученые решили исследовать, как при этом меняется состав и жизнедеятельность микроорганизмов легких. Различные бактерии достаточно слабо различаются в том, как они реагируют на высокие дозы кислорода.
Была проведена серия экспериментов на здоровых лабораторных мышах. Изменения оказались ровно такими, как предполагали ученые: кислород-толератные бактерии, такие как стафилококки, распространялись в этой среде куда активнее остальных.
Следующий вопрос заключался в том, какое из изменений происходит первым – повреждение легочной ткани или изменения микробиомных взаимоотношений? Оказалось, что микробиом реагировал на оксигенотерапию уже в течение первого дня, в то время как повреждения легких развивались только после 3 дня.
В последнем эксперименте ученые сравнили 2 группы генетически идентичных мышей, получавших оксигенотерапию: со стерильными легкими и с обычным легочным микробиомом. Первая группа не демонстрировала легочных повреждений, характерных для второй группы с естественной микрофлорой в легких.
Это исследование указывает на то, что в патогенезе легочных повреждений при Covid-19 у пациентов, получающих оксигенотерапию, по-видимому, определенную роль играет легочный микробиом.
Тем не менее, результаты использования антибиотиков оказались неожиданными: применение ванкомицина, обладающего эффективностью против грамположительных стафилококков, не повлияло на возникновение легочных повреждений, в отличие от цефтриаксона, направленного на грамотрицательные бактерии.
Авторы работы настаивают на том, чтобы на основании их данных не проводилось никаких изменений актуальных протоколов лечения, в особенности оксигенотерапии. Необходимо проведение рандомизированных контролируемых исследований для получения уверенных клинических рекомендаций.
Что делает кислород в клетке
Большинство людей не контролирует свое дыхание. Следует отметить, чем выше частота дыхания, тем больше вероятность возникновения серьезных проблем со здоровьем.
Итак, как же дышать правильно и с пользой для здоровья?
Дыхание через нос является наиболее правильным и оптимальным, в то время как дыхание ртом снижает оксигенацию тканей, повышает частоту сердечных сокращений и кровяное давление, а также имеет множество других неблагоприятных последствий для здоровья.
Преимущества носового дыхания очевидны.
При дыхании через рот отсутствуют барьеры, препятствующие попаданию болезнетворных микробов в организм.
Во-вторых, носовое дыхание обеспечивает лучший кровоток и объем легких. Расширение сосудов под воздействием оксида азота увеличивает площадь поверхности альвеол, в результате чего кислород в легких поглощается более эффективно.
Носовое дыхание (в отличие от дыхания через рот) улучшает кровообращение, повышает уровень кислорода в крови и уровень углекислого газа, замедляет частоту дыхания и увеличивает общий объем легких.
Постоянное дыхание через рот вызывает сужение дыхательных путей.
При дыхании через рот происходит чрезмерная стимуляция легких кислородом, но поскольку поступающий таким образом воздух не увлажнен, а сосуды недостаточно расширены, то фактическая абсорбция кислорода через альвеолы значительно ниже, чем при носовом дыхании.
В-третьих, носовое дыхание участвует в терморегуляции организма, помогая поддерживать температуру тела.
В-четвертых, дыхание через нос улучшает мозговую деятельность и функционирование всех органов и систем организма.
Носовое дыхание, как часть дыхательного процесса в организме, также контролируется гипоталамусом. При увеличении воздушного потока через правую ноздрю наблюдается повышение активности левого полушария мозга, отвечающего за логику и анализ, а при увеличении воздушного потока через левую ноздрю наблюдается повышение активности правого полушария мозга, отвечающего за обработку невербальной информации и пространственную ориентацию.
При дыхании через рот мы отказываем в оптимальной оксигенации нашему сердцу, мозгу и всем другим органам, в результате чего могут развиться аритмии и другие сердечные заболевания.
В пятых, носовое дыхание помогает при высоких физических нагрузках, в том числе во время тренировок.
Когда уровень углекислого газа в нашем организме слишком низкий, происходит нарушение кислотно-щелочного равновесия, изменяется pH крови, что приводит к ухудшению способности гемоглобина выделять кислород нашим клеткам (эффект Вериго – Бора). Эффект Вериго-Бора был открыт независимо друг от друга русским физиологом Б.Ф. Вериго в 1892 году и датским физиологом К. Бором в 1904 году, и заключается он в зависимости степени диссоциации оксигемоглобина от величины парциального давления углекислоты в альвеолярном воздухе и крови. При снижении парциального давления углекислого газа в крови сродство кислорода к гемоглобину повышается, что препятствует переходу кислорода из капилляров в ткани.
Носовое дыхание создает примерно на 50 % больше сопротивления воздушному потоку у здоровых людей, чем дыхание через рот, а также помогает замедлить дыхательный цикл, уменьшить количество дыхательных движений, что приводит к увеличению поглощения кислорода на 10-20 %.
Таким образом, если мы хотим улучшить свои физические показатели, во время физических нагрузок следует дышать носом. Интенсивность занятий спортом необходимо регулировать в соответствии с дыханием. Если вы чувствуете, что дыхания носом вам не хватает, необходимо снизить темп тренировки. Это временное явление, через довольно быстрый промежуток времени организм начнет приспосабливаться к повышенному уровню углекислого газа.
В шестых, носовое дыхание обладает терапевтическим действием. При правильном дыхании через нос можно снизить артериальное давление и снизить уровень стресса.
Дыхание через рот может привести к нарушению прикуса, изменению анатомии лица у детей, ухудшает качество сна, в результате чего мы выглядим и чувствуем себя уставшим. Также при дыхании через рот ускоряется потеря воды, в результате чего возможно обезвоживание.
При дыхании через рот пропускается много важных этапов в этом физиологическом процессе, что может привести к проблемам со здоровьем, таким как храп, ночное апноэ. Дыхание через рот способствует гипервентиляции, которая фактически снижает оксигенацию тканей. Дыхание ртом также приводит к снижению уровня углекислого газа в организме и снижению способности легких отфильтровывать токсичные загрязнения, поступающие из воздуха.
Дыхание ртом можно использовать в экстренных случаях. При гипоксии наш организм рефлекторно реагирует на недостаток кислорода, начиная зевать, пытаясь таким образом увеличить количество поступающего воздуха.
В следующий раз мы рассмотрим несколько техник контролируемого дыхания, которые помогут вам улучшить свое здоровье.
Кислородотерапия: лечение и профилактика заболеваний
Кислородотерапия или оксигенотерапия — это метод лечения заболеваний при помощи воздушной смеси с повышенным содержанием кислорода.
Абсолютных противопоказаний к кислородотерапии нет, однако выбор способа и техника ее проведения должны подбираться больному индивидуально в зависимости от патологического процесса и возраста, чтобы избежать возможных осложнений.
Кислородотерапия поможет наладить работу сердца, головного мозга, легких, печени, активизировать кровоснабжение внутренних органов, нормализовать гемодинамику, кислотно-щелочное состояние и газовый состав артериальной крови.
Для проведения терапии чаще всего используются кислородные концентраторы. Они очень удобны в использовании, эргономичны, берут мало электроэнергии и имеют несколько режимов работы. Их можно использовать как в медицинских учреждениях, так и дома.
Виды кислородотерапии
В зависимости от пути введения кислорода способы кислородной терапии разделяют на два основных вида:
Проведение кислородотерапии
Наиболее распространенные методики:
Техника проведения процедуры кислородотерапии:
Кислородотерапия: показания и противопоказания
Показания
Кроме того, её применение показано для:
Кислородотерапия может помочь при:
Противопоказания кислородотерапии
Процедуры кислородной терапии следует проводить под контролем медработников. Необходимо правильно соблюдать пропорции компонентов газовой смеси. Превышение концентрации кислорода и/или увеличение продолжительности сеанса может привести к нежелательным последствиям. Поэтому перед применением газовой смеси необходимо проконсультироваться с врачом и пройти медицинское
обследование.
«До недавнего времени считалось, что оксигенотерапия практически безвредна, однако систематический обзор свидетельствует о том, что излишняя оксигенация у пациентов с нормальной сатурацией [«сатурация» (от лат. saturatio насыщение) — насыщение жидкостей, в т. ч. плазмы крови и других биологических жидкостей, газами] увеличивает смертность. Обзор включал 25 рандомизированных контролируемых исследований, где пациенты получали свободную или контролируемую оксигенотерапию, смертность пациентов в группе свободной оксигенотерапии оказалась выше». Оригинальная статья опубликована на сайте РМЖ (Русский медицинский журнал).
Кислородотерапия в профилактике и лечении сердечно-сосудистых заболеваний
Кислородная терапия применяется как дополнение к общему лечению сердечно-сосудистых заболеваний. Она помогает насытить кровь кислородом до 90% и выше, а также повысить его доставку к сердечной мышце. Благодаря кислородотерапии улучшаются общие газовые значения и снижается артериальное давление.
Регулярное применения кислородной терапии в течение полугода помогает снизить проявления кислородного голодания и увеличить оксигенацию сердечной ткани. Улучшается гемодинамика в сердце и сосудах.
Успешно применяют кислородную терапию и при лечении ишемической болезни сердца. После операций на миокарде возможно насыщение крови кислородом в барокамере под давлением.
Важное место занимает кислородотерапия при наличии врожденных пороков сердца, которые сопровождает цианоз. Даже небольшая физическая нагрузка или эмоциональное напряжение способны вызвать синюшность кожных покровов ребенка. Достаточно непродолжительного вдыхания кислорода для заметного улучшения состояния.
Кислородотерапия в реабилитации после коронавирусной инфекции
Основная проблема при коронавирусе – развитие у больных гипоксемии (падение уровня кислорода в крови) на фоне острой дыхательной недостаточности (ОДН). Длительно существующую ОДН и гипоксию часто осложняют состояния, угрожающие жизни: острый респираторный дистресс-синдром, септический шок, полиорганная недостаточность.
Для поддержания дыхательной функции, лечения гипоксии и профилактики осложнений применяются различные виды респираторной терапии.
Варианты респираторной поддержки у больных с COVID-19
Выбор методики и оборудования зависит от состояния пациента и тяжести дыхательной недостаточности.
Кислородный коктейль
Кислородный коктейль – это напиток, насыщенный кислородом. Представляет собой густую, с высокой концентрацией кислорода пену. Готовится на основе сока, морса, травяного чая или любого другого не газированного напитка без мякоти.
В середине прошлого века советские ученые доказали, что кислород всасывается и транспортируется к внутренним органам не только в легких, но и в желудке.
Изначально кислородный напиток использовали как целебное средство только в лечебно-оздоровительных учреждениях – санаториях и больницах.
В Кардиологическом санаторном центре «Переделкино» кислородный коктейль применяется в медицинской программе «Восстановление после коронавирусной инфекции».
Необходимо помнить, что оздоровление кислородными коктейлями имеет ряд противопоказаний, поэтому следует проконсультироваться с врачом.
Кардиологический санаторный центр «Переделкино»
В КСЦ «Переделкино» кислородотерапия применяется в медицинских программах Лечение и Кардиопрофилактика.
Получить процедуру кислородотерапии можно находясь на амбулаторном лечении в КСЦ «Переделкино».
Для проведения кислородной терапии в санатории используется кислородный концентратор LFY-1-SA
Подробнее о кислородотерапии в КСЦ «Переделкино» можно узнать у консультанта на нашем сайте
Уважаемые читатели, статьи носят ознакомительный характер. Перед применением рекомендаций необходимо проконсультироваться с врачом.
Информация по приказу 956Н
Сведения о регистрации
Сведения об учредителях
Руководство
Режим работы
График приема граждан руководителем и уполномоченными лицами
Адреса и контакты органов в сфере охраны здоровья
Информация о правах и обязанностях граждан в сфере охраны здоровья
Программа госгарантий
Правила оказания платных услуг
Медицинский персонал
График работы и часы приема медработников
Перечень ЖНВЛП
Перечень ЛП, назначаемых по решению комиссии
Лицензия
Приказы
Тарифы
Политика конфиденциальности
1. Общие положения
Настоящая политика обработки персональных данных составлена в соответствии с требованиями Федерального закона от 27.07.2006. №152-ФЗ «О персональных данных» и определяет порядок обработки персональных данных и меры по обеспечению безопасности персональных данных ООО КСЦ «Переделкино» (далее – Оператор).
Оператор ставит своей важнейшей целью и условием осуществления своей деятельности соблюдение прав и свобод человека и гражданина при обработке его персональных данных, в том числе защиты прав на неприкосновенность частной жизни, личную и семейную тайну.
Настоящая политика Оператора в отношении обработки персональных данных (далее – Политика) применяется ко всей информации, которую Оператор может получить о посетителях веб-сайта https://peredelkinokardio.ru/.
2. Основные понятия, используемые в Политике
Автоматизированная обработка персональных данных – обработка персональных данных с помощью средств вычислительной техники;
Блокирование персональных данных – временное прекращение обработки персональных данных (за исключением случаев, если обработка необходима для уточнения персональных данных);
Веб-сайт – совокупность графических и информационных материалов, а также программ для ЭВМ и баз данных, обеспечивающих их доступность в сети интернет по сетевому адресу https://peredelkinokardio.ru/;
Информационная система персональных данных — совокупность содержащихся в базах данных персональных данных, и обеспечивающих их обработку информационных технологий и технических средств;
Обезличивание персональных данных — действия, в результате которых невозможно определить без использования дополнительной информации принадлежность персональных данных конкретному Пользователю или иному субъекту персональных данных;
Обработка персональных данных – любое действие (операция) или совокупность действий (операций), совершаемых с использованием средств автоматизации или без использования таких средств с персональными данными, включая сбор, запись, систематизацию, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передачу (распространение, предоставление, доступ), обезличивание, блокирование, удаление, уничтожение персональных данных;
Оператор – государственный орган, муниципальный орган, юридическое или физическое лицо, самостоятельно или совместно с другими лицами организующие и (или) осуществляющие обработку персональных данных, а также определяющие цели обработки персональных данных, состав персональных данных, подлежащих обработке, действия (операции), совершаемые с персональными данными;
Персональные данные – любая информация, относящаяся прямо или косвенно к определенному или определяемому Пользователю веб-сайта https://peredelkinokardio.ru/;
Пользователь – любой посетитель веб-сайта https://peredelkinokardio.ru/;
Предоставление персональных данных – действия, направленные на раскрытие персональных данных определенному лицу или определенному кругу лиц;
Распространение персональных данных – любые действия, направленные на раскрытие персональных данных неопределенному кругу лиц (передача персональных данных) или на ознакомление с персональными данными неограниченного круга лиц, в том числе обнародование персональных данных в средствах массовой информации, размещение в информационно-телекоммуникационных сетях или предоставление доступа к персональным данным каким-либо иным способом;
Трансграничная передача персональных данных – передача персональных данных на территорию иностранного государства органу власти иностранного государства, иностранному физическому или иностранному юридическому лицу;
Уничтожение персональных данных – любые действия, в результате которых персональные данные уничтожаются безвозвратно с невозможностью дальнейшего восстановления содержания персональных данных в информационной системе персональных данных и (или) результате которых уничтожаются материальные носители персональных данных.
3. Оператор может обрабатывать следующие персональные данные Пользователя
Фамилия, имя, отчество;
Электронный адрес;
Номера телефонов;
Также на сайте происходит сбор и обработка обезличенных данных о посетителях (в т.ч. файлов «cookie») с помощью сервисов интернет-статистики (Яндекс Метрика и Гугл Аналитика и других).
Вышеперечисленные данные далее по тексту Политики объединены общим понятием Персональные данные.
4. Цели обработки персональных данных
Цель обработки персональных данных Пользователя — информирование Пользователя посредством отправки электронных писем; предоставление услуг.
Также Оператор имеет право направлять Пользователю уведомления о новых продуктах и услугах, специальных предложениях и различных событиях. Пользователь всегда может отказаться от получения информационных сообщений, направив Оператору письмо на адрес электронной почты info@peredelkinokardio.ru с пометкой «Отказ от уведомлениях о новых продуктах и услугах и специальных предложениях».
Обезличенные данные Пользователей, собираемые с помощью сервисов интернет-статистики, служат для сбора информации о действиях Пользователей на сайте, улучшения качества сайта и его содержания.
5. Правовые основания обработки персональных данных
Оператор обрабатывает персональные данные Пользователя только в случае их заполнения и/или отправки Пользователем самостоятельно через специальные формы, расположенные на сайте https://peredelkinokardio.ru/. Заполняя соответствующие формы и/или отправляя свои персональные данные Оператору, Пользователь выражает свое согласие с данной Политикой.
Оператор обрабатывает обезличенные данные о Пользователе в случае, если это разрешено в настройках браузера Пользователя (включено сохранение файлов «cookie» и использование технологии JavaScript).
6. Порядок сбора, хранения, передачи и других видов обработки персональных данных
Безопасность персональных данных, которые обрабатываются Оператором, обеспечивается путем реализации правовых, организационных и технических мер, необходимых для выполнения в полном объеме требований действующего законодательства в области защиты персональных данных.
Оператор обеспечивает сохранность персональных данных и принимает все возможные меры, исключающие доступ к персональным данным неуполномоченных лиц.
Персональные данные Пользователя никогда, ни при каких условиях не будут переданы третьим лицам, за исключением случаев, связанных с исполнением действующего законодательства.
В случае выявления неточностей в персональных данных, Пользователь может актуализировать их самостоятельно, путем направления Оператору уведомление на адрес электронной почты Оператора info@peredelkinokardio.ru с пометкой «Актуализация персональных данных».
Срок обработки персональных данных является неограниченным. Пользователь может в любой момент отозвать свое согласие на обработку персональных данных, направив Оператору уведомле
7. Трансграничная передача персональных данных
Оператор до начала осуществления трансграничной передачи персональных данных обязан убедиться в том, что иностранным государством, на территорию которого предполагается осуществлять передачу персональных данных, обеспечивается надежная защита прав субъектов персональных данных.
Трансграничная передача персональных данных на территории иностранных государств, не отвечающих вышеуказанным требованиям, может осуществляться только в случае наличия согласия в письменной форме субъекта персональных данных на трансграничную передачу его персональных данных и/или исполнения договора, стороной которого является субъект персональных данных.