Алгоритм Дейкстры позволяет найти кратчайший путь между двумя любыми вершинами графа (или кратчайший путь сети между заданным исходным и любым другим узлом).
Граф — это совокупность двух множеств: точек (называются вершинами) и путей между ними (изображаются линиями и называются рёбрами).
Алгоритм Дейкстры применяется в жизни. Например, можно использовать графы для моделирования транспортной сети, где точки (вершины) являются объектами, которые отправляют или получают посылки/продукты (места, что водитель должен посетить), а рёбра (линии) представляют собой соединяющие их дороги:
Графы могут быть двух типов:
Пример
Рассмотрим представленный выше пример:
Алгоритм произведёт кратчайший путь от узла 0 ко всем остальным узлам графа.
Для этого графа мы будем предполагать, что вес рёбер (вес или стоимость всегда являются неотрицательными, т.е. ≥ 0; это цифра возле каждой линии) представляет собой расстояние между двумя узлами:
Мы найдём кратчайший путь от узла 0 к узлу 1, потом к узлу 2, потом к узлу 3 и т. д. для каждого узла в графе.
Этот граф также можно представить в виде матрицы:
0
1
2
3
4
0
0
7
5
1
7
0
3
5
2
5
3
0
4
3
5
0
6
Таблица: слева «выходит из», сверху «куда направляется», и выставляем «вес» (пример: из «0» идёт в «1» с весом «7», из «0» идёт в «2» с весом «5», и больше из 0 не выходит ничего).
Если можно идти из одного узла в другой и обратно, это указывается в матрице (например: из 2 в 1 с весом 3 И из 1 в 2 с весом 3).
Пошаговый процесс нахождения минимального пути
Шаг 0. В этом примере исходным узлом будет узел 0 (т.к. расстояние от исходного узла до самого себя равно 0; но исходным узлом может быть любой узел, который вы выберете).
Шаг 1. Для первоначального представления расстояния от исходного узла до всех остальных узлов мы используем символ бесконечности, т.к. оно ещё не определено:
Делаем такой список узлов с расстояниями:
Расстояние:
Мы начали с узла 0, значит, отмечаем этот узел как посещённый на диаграмме и вычёркиваем его из списка непосещённых узлов (дистанцию, которая равна нулю, уже обозначили).
Шаг 2. Теперь проверяем расстояние от узла 0 до соседних с ним узлов. Как это видно на картинке, это узлы 1 и 2 (см. красные линии), это наши возможные пути:
Путь 1 = 7, путь 2 = 5, т.к. путь 2 короче (дешевле), то выберем его.
Рассматриваем дальнейшие пути/узлы:
Однако существует прямой путь из 0 в узел 1, который равняется 7, а 7
Остались непосещёнными 3 и 4.
Непосещённый сосед 2 – это 4 (мы его ещё не посетили, мы только посчитали), в него можно попасть 5 + 4 = 9, ставим 9.
Непосещённый сосед 1 – это 3, в него можно попасть через:
Естественно выбираем самый короткий путь (равный 12).
Путь 4 тоже оставляем тот, который был выбран, т.к. более короткого не видно (путь через 3 равен 12 + 6 = 18), ставим его посещённым.
Так как непосещённых узлов нет, всё готово!
Расстояние:
Минимальное расстояние каждого узла, что мы нашли, представляет собой минимальное расстояние от этого узла до узла 0 (мы его выбрали в начале в качестве начального узла).
Минимальное остовное дерево
Ещё существует метод «Минимальное остовное дерево», и эти процессы часто путаются. Однако алгоритм Дейкстры отличается от метода Минимального остовного дерева тем, что кратчайшее расстояние между двумя вершинами может не включать все вершины графа; т.е. в алгоритме Дейкстры все вершины должны быть посещены.
Алгоритм Дейкстры. Поиск оптимальных маршрутов на графе
Из многих алгоритмов поиска кратчайших маршрутов на графе, на Хабре я нашел только описание алгоритма Флойда-Уоршалла. Этот алгоритм находит кратчайшие пути между всеми вершинами графа и их длину. В этой статье я опишу принцип работы алгоритма Дейкстры, который находит оптимальные маршруты и их длину между одной конкретной вершиной (источником) и всеми остальными вершинами графа. Недостаток данного алгоритма в том, что он будет некорректно работать если граф имеет дуги отрицательного веса.
Для примера возьмем такой ориентированный граф G:
Этот граф мы можем представить в виде матрицы С:
Возьмем в качестве источника вершину 1. Это значит что мы будем искать кратчайшие маршруты из вершины 1 в вершины 2, 3, 4 и 5. Данный алгоритм пошагово перебирает все вершины графа и назначает им метки, которые являются известным минимальным расстоянием от вершины источника до конкретной вершины. Рассмотрим этот алгоритм на примере.
Присвоим 1-й вершине метку равную 0, потому как эта вершина — источник. Остальным вершинам присвоим метки равные бесконечности.
Далее выберем такую вершину W, которая имеет минимальную метку (сейчас это вершина 1) и рассмотрим все вершины в которые из вершины W есть путь, не содержащий вершин посредников. Каждой из рассмотренных вершин назначим метку равную сумме метки W и длинны пути из W в рассматриваемую вершину, но только в том случае, если полученная сумма будет меньше предыдущего значения метки. Если же сумма не будет меньше, то оставляем предыдущую метку без изменений.
После того как мы рассмотрели все вершины, в которые есть прямой путь из W, вершину W мы отмечаем как посещённую, и выбираем из ещё не посещенных такую, которая имеет минимальное значение метки, она и будет следующей вершиной W. В данном случае это вершина 2 или 5. Если есть несколько вершин с одинаковыми метками, то не имеет значения какую из них мы выберем как W.
Мы выберем вершину 2. Но из нее нет ни одного исходящего пути, поэтому мы сразу отмечаем эту вершину как посещенную и переходим к следующей вершине с минимальной меткой. На этот раз только вершина 5 имеет минимальную метку. Рассмотрим все вершины в которые есть прямые пути из 5, но которые ещё не помечены как посещенные. Снова находим сумму метки вершины W и веса ребра из W в текущую вершину, и если эта сумма будет меньше предыдущей метки, то заменяем значение метки на полученную сумму.
Исходя из картинки мы можем увидеть, что метки 3-ей и 4-ой вершин стали меньше, тоесть был найден более короткий маршрут в эти вершины из вершины источника. Далее отмечаем 5-ю вершину как посещенную и выбираем следующую вершину, которая имеет минимальную метку. Повторяем все перечисленные выше действия до тех пор, пока есть непосещенные вершины.
Выполнив все действия получим такой результат:
Также есть вектор Р, исходя из которого можно построить кратчайшие маршруты. По количеству элементов этот вектор равен количеству вершин в графе, Каждый элемент содержит последнюю промежуточную вершину на кратчайшем пути между вершиной-источником и конечной вершиной. В начале алгоритма все элементы вектора Р равны вершине источнику (в нашем случае Р = <1, 1, 1, 1, 1>). Далее на этапе пересчета значения метки для рассматриваемой вершины, в случае если метка рассматриваемой вершины меняется на меньшую, в массив Р мы записываем значение текущей вершины W. Например: у 3-ей вершины была метка со значением «30», при W=1. Далее при W=5, метка 3-ей вершины изменилась на «20», следовательно мы запишем значение в вектор Р — Р[3]=5. Также при W=5 изменилось значение метки у 4-й вершины (было «50», стало «40»), значит нужно присвоить 4-му элементу вектора Р значение W — P[4]=5. В результате получим вектор Р = <1, 1, 5, 5, 1>.
Зная что в каждом элементе вектора Р записана последняя промежуточная вершина на пути между источником и конечной вершиной, мы можем получить и сам кратчайший маршрут.
Рассмотрим пример нахождение кратчайшего пути. Дана сеть автомобильных дорог, соединяющих области города. Некоторые дороги односторонние. Найти кратчайшие пути от центра города до каждого города области.
Для решения указанной задачи можно использовать алгоритм Дейкстры — алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Работает только для графов без рёбер отрицательного веса.
Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.
Кружками обозначены вершины, линиями – пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначен их вес – длина пути. Рядом с каждой вершиной красным обозначена метка – длина кратчайшего пути в эту вершину из вершины 1.
Инициализация
Метка самой вершины 1 полагается равной 0, метки остальных вершин – недостижимо большое число (в идеале — бесконечность). Это отражает то, что расстояния от вершины 1 до других вершин пока неизвестны. Все вершины графа помечаются как непосещенные.
Первый шаг
Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6. Обходим соседей вершины по очереди.
Первый сосед вершины 1 – вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1 (значению её метки) и длины ребра, идущего из 1-й во 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2 (10000), поэтому новая метка 2-й вершины равна 7. Аналогично находим длины пути для всех других соседей (вершины 3 и 6).
Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит. Вершина 1 отмечается как посещенная.
Второй шаг
Шаг 1 алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.
Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.
Вершина 1 уже посещена. Следующий сосед вершины 2 — вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9, а 9 Реализация на C++
Алгори́тм Де́йкстры (Dijkstra’s algorithm) — алгоритм на графах, изобретённый нидерландским ученым Э. Дейкстрой в 1959 году. Находит кратчайшее расстояние от одной из вершин графа до всех остальных. Алгоритм работает только для графов без рёбер отрицательного веса. Алгоритм широко применяется в программировании и технологиях, например, его использует протокол OSPF для устранения кольцевых маршрутов.
Содержание
Формулировка задачи
Примеры
Вариант 1. Дана сеть автомобильных дорог, соединяющих города Московской области. Некоторые дороги односторонние. Найти кратчайшие пути от города Москва до каждого города области (если двигаться можно только по дорогам).
Вариант 2. Имеется некоторое количество авиарейсов между городами мира, для каждого известна стоимость. Стоимость перелёта из A в B может быть не равна стоимости перелёта из B в A. Найти маршрут минимальной стоимости (возможно, с пересадками) от Копенгагена до Барнаула.
Формальное определение
Неформальное объяснение
Каждой вершине из V сопоставим метку — минимальное известное расстояние от этой вершины до a. Алгоритм работает пошагово — на каждом шаге он «посещает» одну вершину и пытается уменьшать метки. Работа алгоритма завершается, когда все вершины посещены.
Инициализация. Метка самой вершины a полагается равной 0, метки остальных вершин — бесконечности. Это отражает то, что расстояния от a до других вершин пока неизвестны. Все вершины графа помечаются как непосещённые.
Шаг алгоритма. Если все вершины посещены, алгоритм завершается. В противном случае, из ещё не посещённых вершин выбирается вершина u, имеющая минимальную метку. Мы рассматриваем всевозможные маршруты, в которых u является предпоследним пунктом. Вершины, в которые ведут рёбра из u, назовем соседями этой вершины. Для каждого соседа вершины u, кроме отмеченных как посещённые, рассмотрим новую длину пути, равную сумме значений текущей метки u и длины ребра, соединяющего u с этим соседом. Если полученное значение длины меньше значения метки соседа, заменим значение метки полученным значением длины. Рассмотрев всех соседей, пометим вершину u как посещенную и повторим шаг алгоритма.
Пример
Рассмотрим выполнение алгоритма на примере графа, показанного на рисунке. Пусть требуется найти кратчайшие расстояния от 1-й вершины до всех остальных.
Кружками обозначены вершины, линиями — пути между ними (ребра графа). В кружках обозначены номера вершин, над ребрами обозначена их «цена» — длина пути. Рядом с каждой вершиной красным обозначена метка — длина кратчайшего пути в эту вершину из вершины 1.
Первый шаг. Рассмотрим шаг алгоритма Дейкстры для нашего примера. Минимальную метку имеет вершина 1. Её соседями являются вершины 2, 3 и 6.
Первый по очереди сосед вершины 1 — вершина 2, потому что длина пути до неё минимальна. Длина пути в неё через вершину 1 равна сумме кратчайшего расстояния до вершины 1, значению её метки, и длины ребра, идущего из 1-й в 2-ю, то есть 0 + 7 = 7. Это меньше текущей метки вершины 2, бесконечности, поэтому новая метка 2-й вершины равна 7.
Аналогичную операцию проделываем с двумя другими соседями 1-й вершины — 3-й и 6-й.
Все соседи вершины 1 проверены. Текущее минимальное расстояние до вершины 1 считается окончательным и пересмотру не подлежит (то, что это действительно так, впервые доказал Э. Дейкстра). Вычеркнем её из графа, чтобы отметить, что эта вершина посещена.
Второй шаг. Шаг алгоритма повторяется. Снова находим «ближайшую» из непосещенных вершин. Это вершина 2 с меткой 7.
Снова пытаемся уменьшить метки соседей выбранной вершины, пытаясь пройти в них через 2-ю вершину. Соседями вершины 2 являются вершины 1, 3 и 4.
Первый (по порядку) сосед вершины 2 — вершина 1. Но она уже посещена, поэтому с 1-й вершиной ничего не делаем.
Следующий сосед вершины 2 — вершина 3, так как имеет минимальную метку из вершин, отмеченных как не посещённые. Если идти в неё через 2, то длина такого пути будет равна 17 (7 + 10 = 17). Но текущая метка третьей вершины равна 9 Алгоритм
Обозначения
Псевдокод
Присвоим
Для всех отличных от
присвоим
Пока
Пусть — вершина с минимальным занесём в Для всех таких, что если d[v] + w[vu]» border=»0″ /> то изменим изменим
Описание
В простейшей реализации для хранения чисел d[i] можно использовать массив чисел, а для хранения принадлежности элемента множеству U — массив булевых переменных.
В начале алгоритма расстояние для начальной вершины полагается равным нулю, а все остальные расстояния заполняются большим положительным числом (бо́льшим максимального возможного пути в графе). Массив флагов заполняется нулями. Затем запускается основной цикл.
На каждом шаге цикла мы ищем вершину с минимальным расстоянием и флагом равным нулю. Затем мы устанавливаем в ней флаг в 1 и проверяем все соседние с ней вершины . Если в них (в ) расстояние больше, чем сумма расстояния до текущей вершины и длины ребра, то уменьшаем его. Цикл завершается, когда флаги всех вершин становятся равны 1, либо когда у всех вершин c флагом 0 . Последний случай возможен тогда и только тогда, когда граф G не связан.
Доказательство корректности
Пусть l(v) — длина кратчайшего пути из вершины a в вершину v. Докажем по индукции, что в момент посещения любой вершины z, d(z)=l(z). База. Первой посещается вершина a. В этот момент d(a)=l(a)=0. Шаг. Пускай мы выбрали для посещения вершину . Докажем, что в этот момент d(z)=l(z). Для начала отметим, что для любой вершины v, всегда выполняется (алгоритм не может найти путь короче, чем кратчайший из всех существующих). Пусть P — кратчайший путь из a в z, y — первая непосещённая вершина на P, x — предшествующая ей (следовательно, посещённая). Поскольку путь P кратчайший, его часть, ведущая из a через x в y, тоже кратчайшая, следовательно l(y)=l(x)+w(xy). По предположению индукции, в момент посещения вершины x выполнялось d(x)=l(x), следовательно, вершина y тогда получила метку не больше чем d(x)+w(xy)=l(x)+w(xy)=l(y). Следовательно, d(y)=l(y). С другой стороны, поскольку сейчас мы выбрали вершину z, её метка минимальна среди непосещённых, то есть . Комбинируя это с , имеем d(z)=l(z), что и требовалось доказать.
Поскольку алгоритм заканчивает работу, когда все вершины посещены, в этот момент d=l для всех вершин.
Сложность алгоритма
Сложность алгоритма Дейкстры зависит от способа нахождения вершины v, а также способа хранения множества непосещенных вершин и способа обновления меток. Обозначим через n количество вершин, а через m — количество ребер в графе G.
скрытые константы в асимптотических оценках трудоемкости велики и использование фибоначчиевых куч редко оказывается целесообразным: обычные двоичные (d-ичные (англ.)) кучи на практике эффективнее.
Альтернативами им служат толстые кучи, тонкие кучи и кучи Бродала (англ.), обладающие теми же асимптотическими оценками, но меньшими константами. [4]
Алгоритм Дейкстры позволяет нам найти кратчайший путь между любыми двумя вершинами графа.
Он отличается от минимального остовного дерева тем, что кратчайшее расстояние между двумя вершинами может не включать все вершины графа.
Как работает алгоритм Дейкстры
Дейкстра использовал это свойство в противоположном направлении, т.е. мы переоцениваем расстояние каждой вершины от начальной вершины. Затем мы посещаем каждый узел и его соседей, чтобы найти кратчайший подпуть к этим соседям.
Алгоритм использует «жадный» подход в том смысле, что мы находим следующее лучшее решение, надеясь, что конечный результат является лучшим решением для всей задачи.
Пример алгоритма Дейкстры
Проще начать с примера, а затем подумать об алгоритме.
Алгоритм Дейкстры. Псевдокод.
Нам также хотелось бы получить кратчайший путь, а не только знать его длину. Для этого мы сопоставляем каждую вершину с последней обновленной длиной пути.
Как только алгоритм закончен, мы можем вернуться от вершины назначения к исходной вершине, чтобы найти путь.
Очередь с минимальным приоритетом может использоваться для эффективного получения вершины с наименьшим расстоянием пути.
Код для алгоритма Дейкстры
Реализация алгоритма Дейкстры в C ++ приведена ниже. Сложность кода может быть улучшена, но абстракции удобны для связи кода с алгоритмом.