что дает адронный коллайдер

Кварки, бозоны и звёздный разрушитель. Для чего нужен Большой адронный коллайдер?

Что это такое?

Большой адронный коллайдер — ускоритель заряженных частиц, построенный с участием 10 тыс. ученых из 100 стран мира. В коллайдере, длина которого около 100 километров, а диаметр превышает 25 километров, учёные «гоняют» частицы в попытке обнаружить новые и ранее неизученные свойства элементарных частиц — протонов, нейтронов и электронов.

Найденный в 2012 году Бозон Хиггса — частица, которой, фактически, связываются электроны, протоны и нейтроны, простому обывателю не даст ничего. Но это пока. В перспективе Бозон Хиггса поможет создать новые системы связи и квантовые компьютеры, работа над которыми, к слову, уже началась.

Расширенное понимание природы и свойств Бозона Хиггса позволит создавать уникальные для техники будущего решения. Например, квантовый интернет с нулевой задержкой (пингом), который будет работать даже на Луне, или принципиально новые суперкомпьютеры, с помощью которых получится найти эффективное лекарство от рака или метод взрыва астероида, который угрожает Земле.

Антивещество – главная мечта ученых в ЦЕРН

Другое направление работ на Большом адронном коллайдере — поиск и «наработка» антиматерии — вещества с потенциально неисчерпаемым источником энергии. Антиматерия — это то, что возникло почти сразу после Большого взрыва и затем бесследно исчезло, оставив учёным лишь след из хлебных крошек.

Принцип получения антиматерии объяснять нет смысла — он слишком сложен для понимания даже тем, кто разбирается в точных науках, но про потенциальное применение антиматерии поговорить всё-таки стоит. В 2010 году учёные из ЦЕРН пояснили, что потенциально антиматерия обладает огромным запасом энергии. Если допустить, что двигатель, основанный на взаимодействии (или, точнее, противодействии) материи и антиматерии поместить в космический корабль, то незначительного количества вещества, нескольких миллиграммов, будет достаточно для полета хотя бы к краю Солнечной системы и возвращения.

Тот же самый принцип и с обычными высокопроизводительными реакторами. Искусственное получение антиводорода, к примеру, считают вменяемой, пусть и очень дорогой альтернативой пока нереализованным видам энергетики, таких, как термоядерный синтез.

БАК очень интересовал армию США, но никто не знает – почему

Известно, что через ведущие НИИ США DARPA заказывало разработку специальных детекторов для коллайдера и в ведомстве живо интересовались результатами работ по этой теме. Что именно интересовало американских военных сказать сложно, однако американские вузы, тесно связанные с DARPA, а также Министерство энергетики США, Национальная ускорительная лаборатория Ферми и Национальный научный фонд будут активно участвовать и в другой, более крупной программе.

Через несколько лет на том же месте, где сейчас находится Большой адронный коллайдер, начнётся строительство суперколлайдера нового типа. В новом ускорителе частиц энергия столкновения должна увеличиться до 100 тераэлектронвольт (ТэВ), при том, что сейчас получают 14 ТэВ. Официально декларируется и цель — поиск новых частиц или сил природы, а также расширение или замена текущей стандартной модели физики элементарных частиц.

К чему приведут такие эксперименты сказать сложно. Физики считают, что включение в «крайние режимы» маловероятно, однако в действительности увеличение мощности суперколлайдера на несколько порядков может привести либо к трагедии, либо к получению супероружия. В 2008 году двое американцев даже пытались засудить Минэнерго США за участие в разгоне субатомных частиц до 99,99% скорости света.

Источник

Частица бога, багет и Шива-разрушитель: 10 фактов о Большом адронном коллайдере

Горячий, как ранняя Вселенная, и холодный, как абсолютный ноль; намного точнее, чем швейцарские часы, но настолько хрупкий, что его можно сломать куском багета; поражающий обывателей и даже ученых своей мощью и известный юмором своих сотрудников. Все это про LHC, юбилею которого посвящает этот материал Indicator.Ru.

Большой адронный коллайдер (Large Hadron Collider, LHC) — гигантский и мощнейшый аппарат, в котором можно ускорять и сталкивать частицы-адроны (протоны и тяжелые ионы), чтобы изучать то, на что они распадутся. На строительство этого сооружения — самого сложного экспериментального устройства из существующих и самого огромного цельного механизма из когда-либо созданных человеком — было потрачено около шести миллиардов долларов. И это не считая уже имеющейся инфраструктуры Европейского центра ядерных исследований!

Главная цель работы LHC — поиск отклонений от Стандартной модели. Это одна из важнейших физических концепций, которая описывает современный мир, но не может пока объяснить гравитацию, темную материю и темную энергию. На коллайдере удалось открыть бозон Хиггса (неуловимую прежде «частицу бога»), а также обнаружить и подтвердить существование тетракварков и пентакварков. Официальный запуск LHC состоялся 10 сентября 2008 года, то есть сегодня у него день рождения! В честь этого мы расскажем о его необычных и неожиданных сторонах.

Факт 1: Откуда взялась аббревиатура CERN

Давайте перестанем путаться раз и навсегда. Все мы постоянно употребляем слово «CERN» или «ЦЕРН», но о расшифровке мало кто задумывается. Многие считают его калькой с английской аббревиатуры. Но как из названия организации, создавшей коллайдер, получить такую аббревиатуру? По-русски это Европейский центр ядерных исследований, по-английски — European Organization for Nuclear Research. Дело в том, что построен коллайдер вблизи Женевы, на границе Франции и Швейцарии, поэтому организация носит французское название, Conseil Européen pour la Recherche Nucléaire, от которого и пошла аббревиатура. Да и звучит CERN благозвучнее, чем какой-нибудь EONR или ЕЦЯИ.

Факт 2: Жарче 100 000 Солнц

Коллайдер очень горяч. Чтобы смоделировать условия, близкие к последствиям Большого взрыва, ученые ускоряют и сталкивают на нем два пучка тяжелых ионов, получая температуры в сотни тысяч раз больше, чем в центре Солнца. Благодаря тому, что в 2012 году в LHC смогли достичь температуры в 5,5 триллиона градусов, физикам удалось получить кварк-глюонную плазму — раскаленный «суп» из свободных строительных элементов материи, словно прямиком из недр новорожденной Вселенной. Плотность такого вещества была больше, чем плотность нейтронных звезд.

Факт 3: Ледяное притяжение

В коллайдере около 9600 супермагнитов, которые по силе в 100 000 раз превосходят притяжение Земли и помогают гонять протоны на околосветовых скоростях. Обмотки этих магнитов сплетены из 36 «струн» толщиной по 15 мм. Каждая «струна» состоит из 6-9 тысяч отдельных нитей из ниобий-титанового сплава, диаметр которых составляет 7 мкм.

Источник

Большой адронный коллайдер: назначение, открытия и мифы

Большой адронный коллайдер (БАК) — самый большой и мощный ускоритель частиц в мире. Он был построен Европейской организацией ядерных исследований (ЦЕРН).

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

10 000 ученых и инженеров из более чем 100 разных стран работали вместе над созданием этого проекта. Его строительство стоило 10 миллиардов долларов. В настоящее время это самая большая и сложная экспериментальная исследовательская установка в мире.

Как выглядит Большой адронный коллайдер

Это гигантский замкнутый туннель, построенный под землей. Он имеет длину 27 километров и уходит на глубину от 50 до 175 метров.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

Находится коллайдер на границе Франции и Швейцарии, недалеко от города Женева.

Как работает Большой адронный коллайдер

Слово «коллайдер» в этом случае можно перевести как «сталкиватель». А сталкивает он адроны — класс частиц, состоящих из нескольких кварков, которые удерживаются сильной субатомной связью. Протоны и нейтроны являются примерами адрона.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

БАК в основном использует столкновение протонов в своих экспериментах. Протоны — это части атомов с положительным зарядом. Коллайдер ускоряет эти протоны в тоннеле, пока они не достигнут почти скорости света. Различные протоны направлены через туннель в противоположных направлениях. Когда они сталкиваются, то можно зафиксировать условия, подобные ранней Вселенной.

Откуда берутся протоны в для столкновения?

Для этого ионизируются атомы водорода. Атом водорода состоит из одного протона и одного электрона. Во время ионизации удаляется электрон и остаётся нужный для эксперимента протон.

БАК состоит из трёх основных частей:

Зачем нужен Большой адронный коллайдер

С помощью БАК можно изучить элементарные частицы и способы их взаимодействия. Он уже многому научил нас в области квантовой физики, и исследователи надеются узнать больше о структуре пространства и времени. Наблюдения, которые делают учёные, помогают понять, какой могла быть Вселенная в течение миллисекунд после Большого взрыва.

Какие открытия совершили на БАК

На данный момент самое большое открытие — это бозон Хиггса. Это одно из важнейших открытий 21 века, объясняющее существование массы частиц во Вселенной. Это подтверждает Стандартную модель, с помощью которой сегодня физики описывают взаимодействие элементарных частиц. Именно на этом взаимодействии основано устройство всей Вселенной.

Суть работы бозона Хиггса в том, что благодаря ему другие элементарные частицы могут иметь и передавать свою массу. Но это очень и очень упрощённое понимание, и если Вам интересно, почитайте научную литературу.

С полным списком всех открытий на Большом адронном коллайдере можно ознакомиться на Википедии.

Может ли коллайер уничтожить Землю

С момента запуска БАК стал объектом разнообразных домыслов. Самый известный — в ходе экспериментов может образоваться чёрная дыра и поглотить планету.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

Есть две причины, чтобы не волноваться.

Надеемся, Вам было интересно, как и нам во время работы над этим материалом!

Источник

Открытия, сделанные в Большом адронном коллайдере

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

Специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком.

Большой адронный коллайдер (Large Hadron Collider, LHC) — ускоритель, предназначенный для разгона элементарных частиц (в частности, протонов).

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

10 сентября 2008 года был произведен официальный запуск коллайдера.

Вскоре после запуска ускоритель вышел из строя и был остановлен до весны 2009 года.

21 октября 2008 года в одном из зданий ЦЕРН в Женеве прошла церемония официального открытия большого адронного коллайдера, которую было решено провести, несмотря на проблемы с запуском.

В 2013 году БАК приостановил свою работу на плановый ремонт и в апреле 2015 года вновь запущен для работы. После запланированного ремонта БАК почти в два раза увеличил свою мощность с 8 до 13 ТэВ, что, по мнению ученых, может привести к новым крупным открытиям.

Запланированная мощность БАК составляет 14 ТэВ, однако она еще ни разу не была достигнута в ходе работы коллайдера.

4 июля 2012 года, после трех лет экспериментов на Большом адронном коллайдере физики ЦЕРНа объявили об открытии «частицы, по своим параметрам очень похожей на бозон Хиггса». Они установили, что масса новой частицы составляет 125-126 гигаэлектронвольт (неопределённость связана с погрешностью измерений). Она не имеет электрического заряда и нестабильна.

Найденная частица проявляла себя наиболее четко в двух самых чистых каналах распада: это распад на два фотона и распад на два Z-бозона с их последующим распадом на четыре лептона (электрона или мюона). Поиски велись еще в трех каналах распада, но из-за больших статистических погрешностей и сильного фона заметить проявления бозона Хиггса в них не удавалось.

На тот момент ученым не было в точности ясно, насколько открытая ими частица соответствует предсказаниям Стандартной модели. К марту 2013 года физики получили достаточно данных о частице, чтобы официально объявить, что это бозон Хиггса.

8 октября 2013 года британскому физику Питеру Хиггсу и бельгийцу Франсуа Энглеру, открывшему механизм нарушения электрослабой симметрии (благодаря этому нарушению элементарные частицы могут иметь массу), была присуждена Нобелевская премия по физике за «теоретическое открытие механизма, который обеспечил понимание происхождения масс элементарных частиц».

В декабре 2013 года, благодаря анализу данных с помощью нейронных сетей, физики ЦЕРНа впервые зафиксировали следы распада бозона Хиггса на фермионы — тау-лептоны и пары b-кварк и b-антикварк.

В июне 2014 года ученые, работающие на детекторе ATLAS, после обработки всей накопленной статистики, уточнили результаты измерения массы хиггсовского бозона. По их данным масса бозона Хиггса равна 125,36 ± 0,41 гигаэлектронвольт. Это практически совпадает — как по значению, так и по точности — с результатом ученых, работающих на детекторе CMS.

В февральской 2015 года публикации в журнале Physical Review Letters физики заявили, что возможной причиной практически полного отсутствия антиматерии во Вселенной и преобладания обычной видимой материи могли послужить движения поля Хиггса – особой структуры, где «живут» бозоны Хиггса. Российско-американский физик Александр Кусенко из университета Калифорнии в Лос-Анджелесе (США) и его коллеги полагают, что им удалось найти ответ на эту вселенскую загадку в тех данных, которые были собраны Большим адронным коллайдером во время первого этапа его работы, когда был обнаружен бозон Хиггса, знаменитая «частица бога».

14 июля 2015 года стало известно, что специалисты Европейского центра ядерных исследований (ЦЕРН) после ряда экспериментов на Большом адронном коллайдере (БАК) объявили об открытии ранее предсказанной российскими учеными новой частицы, называемой пентакварком. Изучение свойств пентакварков позволит лучше понять, как устроена обычная материя. Возможность существования пентакварков предсказали сотрудники Петербургского института ядерной физики имени Константинова Дмитрий Дьяконов, Максим Поляков и Виктор Петров.

Данные, собранные БАК на первом этапе работы, позволили физикам из коллаборации LHCb, занимающейся поиском экзотических частиц на одноименном детекторе, «поймать» сразу несколько частиц из пяти кварков, получивших временные имена Pc(4450)+ и Pc(4380)+. Они обладают очень большой массой – около 4,4-4,5 тысячи мегаэлектронвольт, что примерно в четыре-пять раз больше, чем аналогичный показатель для протонов и нейтронов, а также достаточно необычным спином. По своей природе они представляют собой четыре «нормальных» кварка, склеенных с одним антикварком.

Статистическая достоверность открытия составляет девять сигма, что эквивалентно одной случайной ошибке или сбою в работе детектора в одном случае на четыре миллиона миллиардов (10 в 18 степени) попыток.

Одной из целей второго запуска БАК станет поиск темной материи. Предполагается, что обнаружение такой материи поможет решить проблемы скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Материал подготовлен на основе информации РИА Новости и открытых источников

Источник

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдер

История, мифы и факты

Идея создания коллайдера была озвучена в 1984 году. А сам проект на строительство коллайдера был одобрен и принят аж в 1995 году. Разработка принадлежит Европейскому центру ядерных исследований (CERN). Вообще запуск коллайдера привлек к себе большое внимание не только ученых, но и простых людей со всего мира. Говорили о всевозможных страхах и ужасах, связанных с запуском коллайдера.

Впрочем, кто-то и сейчас, вполне возможно, ждет апокалипсиса, связанного с работой БАК и тресется от одной мысли о том, что будет, если ч взорвется большой адронный коллайдер. Хотя, в первую очередь все боялись черной дыры, которая, сначала будучи микроскопической, разрастется и благополучно поглотит сначала сам коллайдер, а за ним Швейцарию и весь остальной мир. Также большую панику вызывала аннигиляционная катастрофа. Группа ученых даже подала в суд, пытаясь остановить строительство. В заявлении говорилось, что сгустки антиматерии, которые могут быть получены в коллайдере, начнут аннигилировать с материей, начнется цепная реакция и вся Вселенная будет уничтожена. Как говорил известный персонаж из «Назад в Будущее»:

Вся Вселенная, конечно, в самом худшем случае. В лучшем – только наша галактика. Доктор Эмет Браун.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдерКоллайдер уничтожает землю

А теперь попытаемся понять, почему он адронный? Дело в том, что он работает с адронами, точнее разгоняет, ускоряет и сталкивает адроны.

Адроны – класс элементарных частиц, подверженных сильному взаимодействию. Адроны состоят из кварков.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдерСтолкновение частиц

Как работает большой адронный коллайдер

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдерДетектор на БАК

В составе коллайдера 4 гигантских детектора: ATLAS, CMS, ALICE и LHCb. Помимо основных больших детекторов, есть еще и вспомогательные. Детекторы предназначены для фиксации результатов столкновений частиц. То есть после того, как на околосветовых скоростях сталкиваются два протона, никто не знает чего ожидать. Чтобы «увидеть», что получилось, куда отскочило и как далеко улетело, и существуют детекторы, напичканные всевозможными датчиками.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдерБольшой адронный коллайдер. Фото расположения

Результаты работы большого адронного коллайдера.

Зачем нужен коллайдер? Ну уж точно не для того, чтобы уничтожить Землю. Казалось бы, какой смысл сталкивать частицы? Дело в том, что вопросов без ответов в современной физике очень много, и изучение мира с помощью разогнанных частиц может в буквальном смысле открыть новый пласт реальности, понять устройство мира, а может быть даже ответить на главный вопрос «смысла жизни, Вселенной и вообще».

Какие открытия уже совершили на БАК? Самое знаменитое – это открытие бозона Хиггса (ему мы посвятим отдельную статью). Помимо того были открыты 5 новых частиц, получены первые данные столкновений на рекордных энергиях, показано отсутствие асимметрии протонов и антипротонов, обнаружены необычные корреляции протонов. Список можно продолжать долго. А вот микроскопических черных дыр, которые наводили страх на домохозяек, обнаружить не удалось.

что дает адронный коллайдер. Смотреть фото что дает адронный коллайдер. Смотреть картинку что дает адронный коллайдер. Картинка про что дает адронный коллайдер. Фото что дает адронный коллайдерБольшой адронный коллайдер

Друзья, любите науку, и она обязательно полюбит Вас! А помочь Вам полюбить науку легко смогут наши авторы. Обращайтесь за помощью, и пусть учеба приносит радость!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *