чем сопровождается процесс горения

Характеристика процесса горения

Всем нам практически ежедневно приходится сталкиваться с тем или иным проявлением процессом горения. В нашей статье мы хотим более подробно рассказать какие особенности включает в себя данный процесс с научной точки зрения.

Горение является основной составляющим процессом на пожаре. Пожар начинается с возникновения горения, его интенсивность развития как правило путь пройденный огнем, то есть скорость горения, а тушение заканчивается прекращением горения.

Под горением обычно понимают экзотермическую реакцию между горючим и окислителем, сопровождающуюся, по крайней мере, одним из трех следующих факторов: пламенем, свечением, дымообразованием. Из-за сложности процесса горения указанное определение не является исчерпывающим. В нем не учтены такие важнейшие особенности горения, как быстрое протекание лежащей в его основе экзотермической реакции, ее самоподдерживающийся характер и способность к самораспространению процесса по горючей смеси.

Различие между медленной экзотермической окислительно-восстановительной реакцией (коррозия железа, гниение) и горением заключается в том, что последняя протекает настолько быстро, что теплота производится быстрее, чем рассеивается. Это приводит к по­вышению температуры в зоне реакции на сотни и даже тысячи гра­дусов, к видимому свечению и образованию пламени. По сути так образуется пламенное горение.Если происходит выделение тепла но пламя при это отсутствует, то этот процесс называется тлением.И в том и в другом процессе происходит образование дыма – аэрозоля полного или неполного сгорания ве­ществ. Стоит отметить, что при горении некоторых веществ пламени не видно, а также отсутствует и выделение дыма, к таким веществам относится водород. Слишком быстрые реакции (взрывчатое пре­вращение) также не входят в понятие горения.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Необходимым условием для возникновения горения является на­личие горючего вещества, окислителя (при пожаре его роль выполняет кислород воздуха) и источника зажигания. Для непосредственно­го возгорания необходимо наличие критических условий по составу горючей смеси, геометрии и температуре горючего материала, давлению и др. После возникновения горения в качестве источника зажигания выступает уже само пламя или зона реакции.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Типичная модель горения построена на реакции окисления органических веществ или углерода кислородом воздуха. Множество физических и химических процессов сопровождают горение. Физика это перенос тепла в систему. Окислительные и восстановительные реакции это составляющая природы горения со стороны химии. Отсюда из понятия горение вытекают самые разные химические превращения, включая разложение исходных соединений, диссоциации и ионизации продуктов.

Совокупность горючего вещества или материала с окислителем представляет собой горючую среду. В результате разложения горю­чих веществ под воздействием источника зажигания происходит об­разование газопаровоздушной реакционной смеси. Горючие смеси, которые по составу (соотношению компонентов горючего и окисли­теля) отвечают уравнению химической реакции, называются смесями стехиометрического состава. Они наиболее опасны в пожарном от­ношении: легче воспламеняются, интенсивнее горят, обеспечивая полное сгорание вещества, в результате чего выделяют максимальное количество теплоты.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Рис. 1. Формы диффузионных пламен

а – горение реактивной струи, б – горение разлитой жидкости, в – горение лесной подстилки

По соотношению количества горючего материала и объема окислителя различают бедные и богатые смеси: бедные содержат в изобилии окислитель, богатые — горючий материал. Минимальное количество окислителя, необходимое для полного сгорания единицы массы (объема) того или иного горю­чего вещества, определяется по уравнению химической реакции. При горении с участием кислорода требуемый (удельный) расход воздуха для большинства горючих веществ находится в пределах 4-15 м 3 /кг. Горение веществ и материалов возможно только при обусловленном содержании в воздухе их паров или газообразных продуктов, а также при концентрации кислорода не ниже заданного предела.

Так, для картона и хлопка самопотухание наступает уже при 14 об. % кислорода, а полиэфирной ваты — при 16 об. %. В процессе горения, как и в других химических процессах, обязательны два этапа: создание молекулярного контакта между реагентами и само взаимодействие молекул горючего с окислителем с об­разованием продуктов реакции. Если скорость превращения исход­ных реагентов определяется диффузионными процессами, т.е. скоростью переноса (пары горючих газов и кислорода переносятся в зону реакции за счет градиента концентраций в соответствии с зако­нами диффузии Фика), то такой режим горения называется диффузионным. На рис. 1 приведены различные формы диффузионных пламен. При диффузионном режиме зона горения размыта, и в ней образуется значительное количество продуктов неполного сгорания. Если же скорость горения зависит только от скорости химической реакции, которая значительно выше скорости диффузии, то режим горения называется кинетическим. Ему свойственны более высокие скорости и полнота сгорания и как следствие высокие ско­рости тепловыделения и температура пламени. Этот режим имеет место в предварительно перемешанных смесях горючего и окисли­теля. Отсюда, если реагенты в зоне химической реакции находятся в одинаковой (обычно газовой) фазе, то такое горение называют гомогенным, при нахождении горючего и окислителя в зоне реакции в разных фазах — гетерогенным. Гомогенным является горение не только газов, но и жидкостей, а также большинства твердых ве­ществ и материалов. Объясняется это тем, что в зоне реакции горят не сами материалы, а их пары и газообразные продукты разложе­ния. Наличие пламени является отличительным признаком гомоген­ного горения.

Примерами гетерогенного горения служат горение углерода, углистых остатков древесины, нелетучих металлов, которые даже при высоких температурах остаются в твердом состоянии. Химическая реакция горения в этом случае будет происходить на поверхности раздела фаз (твердой и газообразной). Отметим, что конечными про­дуктами горения могут быть не только оксиды, но и фториды, хлориды, нитриды, сульфиды, карбиды и др.

Характеристики процесса горения разнообразны. Их можно подразделить на следующие группы: форма, размер и структура пламени; температура пламени, его излучательная способность; тепловыделение и теплота сгорания; скорость горения и концентрационные пределы устойчивого горения и др.

Всем известно, что при горении образуется свечение которое сопровождает пламя продукта горения.

Рассмотрим две системы:

В первом случае при возникновении горения весь процесс будет происходить в пламени, во втором же случае часть реакций будет происходить в самом материале, либо его поверхности. Как упоминалось выше существуют газы которые могут гореть без пламени, но если рассматривать твердые вещества существуют также группы металлов которые также способны гореть без проявления пламени.

Часть пламени с максимальным значением, где происходят интенсивные превращения, называется фронтом пламени.

Теплообменные процессы и диффузия активных частиц из зоны горения которые являются ключевыми механизмами движения фронта пламени по горючей смеси.

Скорость распространения пламени принято разделять на:

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Рис. 2. Ламинарное диффузионное пламя

В зависимости от характера скорости движения газового потока, создающего пламя, различают ламинар­ные и турбулентные пламена. В ламинарном пламени движение газов происходит в разных слоях, все процессы тепло-, массообмена происходят путем мо­лекулярной диффузии и конвекции. В турбулентных пламенах про­цессы тепло-, массообмена осуществляются в основном за счет макроскопического вихревого движения. Пламя свечи — пример лами­нарного диффузионного пламени (рис. 2). Любое пламя высотой более 30 см будет уже обладать случайной газовой механической не­устойчивостью, которая проявляется видимыми завихрениями дыма и пламени.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Рис. 3. Переход ламинарного потока в турбулентный

Очень наглядным примером перехода ламинарного потока в турбулентный является струйка сигаретного дыма (рис. 3), которая, поднявшись на высоту около 30 см, приобретает турбулентность.

При пожарах пламена имеют диффузионный турбулентный ха­рактер. Присутствие турбулентности в пламени усиливает перенос тепла, а смешивание влияет на химические процессы. В турбулентном пламени выше также скорости горения. Это явление делает затруднительным перенос поведения мелкомасштабных пламен на крупномасштабные, имеющих большую глубину и высоту.

Экспериментально доказано, что температура горения веществ в воздухе гораздо ниже температуры горения в атмосферной кислородной среде

В воздухе температура будет колебаться от 650 до 3100 °С, а в кислородной показатели температуры возрастут на 500-800 °С.

Источник

Горение

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Горе́ние — сложный физико-химический процесс превращения компонентов горючей смеси в продукты сгорания с выделением теплового излучения, света и лучистой энергии. Описать природу горения можно как бурно идущее окисление.

Дозвуковое горение (дефлаграция) в отличие от взрыва и детонации протекает с низкими скоростями и не связано с образованием ударной волны. К дозвуковому горению относят нормальное ламинарное и турбулентное распространения пламени, к сверхзвуковому — детонацию.

Горение подразделяется на тепловое и цепное. В основе теплового горения лежит химическая реакция, способная протекать с прогрессирующим самоускорением вследствие накопления выделяющегося тепла. Цепное горение встречается в случаях некоторых газофазных реакций при низких давлениях.

Условия термического самоускорения могут быть обеспечены для всех реакций с достаточно большими тепловыми эффектами и энергиями активации.
Горение может начаться самопроизвольно в результате самовоспламенения либо быть инициированным зажиганием. При фиксированных внешних условиях непрерывное горение может протекать в стационарном режиме, когда основные характеристики процесса — скорость реакции, мощность тепловыделения, температура и состав продуктов — не изменяются во времени, либо в периодическом режиме, когда эти характеристики колеблются около своих средних значений. Вследствие сильной нелинейной зависимости скорости реакции от температуры, горение отличается высокой чувствительностью к внешним условиям. Это же свойство горения обусловливает существование нескольких стационарных режимов при одних и тех же условиях (гистерезисный эффект).

Содержание

Теория горения

При адиабатическом сжигании горючей смеси могут быть рассчитаны количество выделившегося при горении тепла, температура ТГ, которая была бы достигнута при полном сгорании (адиабатическая температура горения) и состав продуктов, если известны состав исходной смеси и термодинамические функции исходной смеси и продуктов. Если состав продуктов заранее известен, ТГ может быть рассчитана из условия равенства внутренней энергии системы при постоянном объёме или её энтальпии при постоянном давлении в исходном и конечном состояниях с помощью соотношения: ТГ = Т0 + Qr/C, где Т0 — начальная температура смеси, С — средняя в интервале температур от Т0 до ТГ удельная теплоёмкость исходной смеси (с учетом её изменения при возможных фазовых переходах), Qr — удельная теплота сгорания смеси при температуре ТГ. При относительном содержании а0 в смеси компонентов, полностью расходуемых в реакции, QГ = Q*а0 где Q — тепловой эффект реакции горения. Значение ТГ при постоянном объёме больше, чем при постоянном давлении, поскольку в последнем случае часть внутренней энергии системы расходуется на работу расширения. На практике условия адиабатичекого горения обеспечиваются в тех случаях, когда реакция успевает завершиться прежде, чем станет существенным теплообмен между реакционным объёмом и окружающей средой, например в камерах сгорания крупных реактивных двигателей, в больших реакторах, при быстро распространяющихся волнах горения.
Термодинамический расчёт даёт лишь частичную информацию о процессе — равновесный состав и температуру продуктов. Полное описание горения, включающее также определение скорости процесса и критических условий при наличии тепло- и массообмена с окружающей средой, можно провести только в рамках макрокинетического подхода, рассматривающего химическую реакцию во взаимосвязи с процессами переноса энергии и вещества.
В случае заранее перемешанной смеси горючего и окислителя реакция горения может происходить во всём пространстве, занятом горючей смесью (объёмное горение), или в сравнительно узком слое, разделяющем исходную смесь и продукты и распространяющемся по горючей смеси в виде так называемой волны горения. В неперемешанных системах возможно диффузионное горение, при котором реакция локализуется в относительно тонкой зоне, отделяющей горючее от окислителя, и определяется скоростью диффузии реагентов в эту зону.

Описание процессов горения

Важность процесса горения в технических устройствах способствовала созданию различных моделей, позволяющих с необходимой точностью его описывать. Так называемое нулевое приближение включает описание химических реакций, изменение температуры, давления и состава реагентов во времени без изменения их массы. Оно соответствует процессам происходящим в закрытом объёме, в который была помещена горючая смесь и нагрета выше температуры воспламенения. Одно-, двух- и трёхмерные модели уже включает в себя перемещение реагентов в пространстве. Количество измерений соответствует количеству пространственных координат в модели. Режим горения бывает как и газодинамическое течение: ламинарным или турбулентным. Одномерное описанное ламинарного горения позволяет получить аналитически важные выводы о фронте горения, которые затем используются в более сложных турбулентных моделях.

Объёмное горение

Объемное горение происходит, например, в теплоизолированном реакторе идеального перемешивания, в который поступает при температуре Т0 исходная смесь с относительным содержанием горючего а0; при другой температуре горения реактор покидает смесь с иным относительным содержанием горючего а. При полном расходе G через реактор условия баланса энтальпии смеси и содержания горючего при стационарном режиме горения могут быть записаны уравнениями:

где w(а, Т) — скорость реакции горения, V — объём реактора. Используя выражение для термодинамической температуры ТГ, можно из (1) получить:

и записать (2) в виде:

где qT = GC(T — Т0) — скорость отвода тепла из реактора с продуктами сгорания, q+T = Qw(a, Т)V — скорость выделения тепла при реакции. Для реакции n-ного порядка с энергией активации:

Диффузионное горение

Характеризуется раздельным подачей в зону горения горючего и окислителя. Перемешивание компонентов происходит в зоне горения. Пример: горение водорода и кислорода в ракетном двигателе, горение газа в бытовой газовой плите.

Горение предварительно смешанной среды

Как следует из названия, горение происходит в смеси, в которой одновременно присутствуют горючее и окислитель. Пример: горение в цилиндре двигателя внутреннего сгорания бензиново-воздушной смеси после инициализации процесса свечой зажигания.

Особенности горения в различных средах

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Беспламенное горение

В отличие от обычного горения, когда наблюдаются зоны окислительного пламени и восстановительного пламени, возможно создание условий для беспламенного горения. Примером может служить каталитическое окисление органических веществ на поверхности подходящего катализатора, например, окисление этанола на платиновой черни.

Твердофазное горение

Это автоволновые экзотермические процессы в смесях неорганических и органических порошков, не сопровождающиеся заметным газовыделением, и приводящие к получению исключительно конденсированных продуктов. В качестве промежуточных веществ, обеспечивающих массо-перенос, образуются газовые и жидкие фазы, не покидающие, однако, горящую систему. Известны примеры реагирующих порошков, в которых образование таких фаз не доказано (тантал-углерод).

Как синонимы используются тривиальные термины «безгазовое горение» и «твердопламенное горение».

Примером таких процессов служит СВС (самораспространяющийся высокотемпературный синтез) в неорганических и органических смесях.

Тление

Вид горения, при котором пламя не образуется, а зона горения медленно распространяется по материалу. Тление обычно наблюдается у пористых или волокнистых материалов с высоким содержанием воздуха или пропитанных окислителями.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горения

Автогенное горение

Самоподдерживающиеся горение. Термин используется в технологиях сжигания отходов. Возможность автогенного (самоподдерживающегося) горения отходов определяется предельным содержанием балластирующих компонентов: влаги и золы. На основе многолетних исследований шведский учёный Таннер предложил для определения границ автогенного горения использовать треугольник-схему с предельными значениями: горючих более 25 %, влаги менее 50 %, золы менее 60 %.

Источник

Процессы горения и взрывов

Сущность процессов горения и взрывов

В наиболее общей формулировке горение представляет собой быстро протекающую физико-химическую реакцию с выделением тепла и света. В природе и в технике чаще всего наблюдаются процессы горения, связанные с окислением горючих веществ кислородом воздуха. Однако многие вещества вступают между собой в реакцию горения и при отсутствии кислорода. Так, водород и некоторые металлы горят в газообразном хлоре, медь — в парах серы, алюминий в броме и т. п.

Наряду с реакциями горения, протекающими в результате химического соединения различных веществ, происходят реакции горения, связанные с разложением газов, жидкостей и твердых веществ (ацетилен, нитроглицерин, нитроклетчатка, азид свинца и др.).

Различают твердые, жидкие и газообразные (парообразные) горючие вещества. Твердые и жидкие вещества могут находиться в воздухе во взвешенном состоянии (в виде пыли или тумана).

Продуктами горения при полном сгорании веществ являются негорючие газы и вода. При неполном сгорании в продуктах горения содержатся окись углерода и другие горючие соединения.

Следует отметить, что тяжелые несчастные случаи при пожарах нередко происходят из-за чрезмерной задымленности и наличия окиси углерода в зоне пожара.

В процессе горения выделяется большое количество тепла, которое определяется теплотой сгорания горючих веществ. Отдача тепла в окружающую среду во время пожара происходит конвекцией и главным образом излучением. Температура горения зависит в основном от теплоты сгорания горючих веществ и от количества образующихся продуктов горения.

Горючие вещества могут воспламеняться при непосредственном контакте с высоконагретыми телами или с открытым пламенем, при нагревании излучением, а также при протекании в горючем веществе экзотермических реакций.

Окислительный процесс горения включает фазы предварительного нагрева, окисления, самовоспламенения и последующего горения. На рисунке 1 приведена кривая изменения температур процесса горения во времени. При нагревании горючего вещества с начальной температурой tн до темпратуры начала окисления tо наблюдается медленное повышение температуры, поскольку подводимое извне тепло расходуется на плавление, испарение или разложение горючих веществ. После нагрева горючего вещества до tо нарастание температуры горения во времени происходит быстрее в связи с выделением тепла при начавшейся реакции окисления.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горенияРисунок 1. – Изменение температуры во времени при нагревании горючих веществ

Однако температура tо еще недостаточна для дальнейшего саморазогревания, так как теплоотдача в окружающую среду превышает образование тепла при начавшейся реакции окисления. По достижении температуры самовоспламенения tc наступает равновесие между приходом тепла к горючему веществу и теплоотдачей в окружающую среду. В результате происходит дальнейший быстрый подъем температуры. При температуре tп появляется пламя и начинается устойчивый процесс горения tг.

Кривая зависимости температуры от времени при пожаре приведена на рисунке 2.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горенияРисунок 2. – Зависимость температуры от времени при пожаре

Горение является весьма сложным физико-химическим процессом. По современным представлениям, в процессе горения возникают малоустойчивые, но весьма активные промежуточные продукты в виде свободных атомов, перекисей, радикалов. Реакционная способность кислорода значительно увеличивается при нагревании.

Температура самовоспламенения горючих веществ колеблется в широких пределах не только для различных веществ, но и для одного и того же вещества. Эта температура зависит от многих переменных факторов: концентрации смеси, давления, объема сосуда (для газо- паро- и пылевоздушных смесей), измельченное™ (для твердых горючих веществ). В таблице 1 приведены пределы колебания температуры самовоспламенения некоторых горючих веществ.

чем сопровождается процесс горения. Смотреть фото чем сопровождается процесс горения. Смотреть картинку чем сопровождается процесс горения. Картинка про чем сопровождается процесс горения. Фото чем сопровождается процесс горенияТаблица 1. Температура самовоспламенения некоторых горючих веществ

Взрывы смесей горючих газов, паров и пыли с воздухом могут происходить только при условии предварительного смешивания их горючих составляющих с кислородом воздуха. Для различных газов, паров и пыли существуют определенные границы взрывоопасных концентраций, являющиеся нижним и верхним пределами взрывоопасной смеси. При содержании горючих составляющих в смеси менее нижнего предела смесь не взрывается и не горит, а при содержании горючих веществ более верхнего предела смесь не взрывается, но горит и, следовательно, является пожароопасной.

Чем меньше нижний предел взрывной концентрации, тем опаснее горючее вещество. Взрывоопасность смесей определяется также интервалом между нижним и верхним пределами смеси. Чем больше этот интервал, тем опаснее взрывная смесь. Так, у ацетилена (С2Н2) нижний предел взрываемости смеси с воздухом (в объемных процентах) равен 2,6%, а верхний 82%. У метана (СН4) эти значения соответственно составляют 5,3 и 14%. Следовательно, взрывоопасность ацетилена значительно больше взрывоопасности метана.

Пожарная опасность твердых горючих веществ

При горении твердых веществ наблюдаются процессы пламенного и беспламенного горения. При беспламенном горении окисление горючего вещества происходит в поверхностном слое. Одним из основных горючих газов при гашении веществ, содержащих углерод, является окись углерода.

Щелочные металлы начинают гореть после их расплавления (некоторые из них образуют пламя при взаимодействии с водой). Горение алюминия, магния и кальция сопровождается образованием значительного количества белого дыма, состоящего из окислов этих металлов. Процесс горения щелочных металлов значительно интенсифицируется при их измельчении. Так, стружка магния и магниевых сплавов (например, электрон) горит весьма интенсивно. Пыль этих металлов в состоянии аэрогеля (в виде отложений) горит медленно, однако, будучи приведена во взвешенное состояние, она взрывается.

Фаза пламенного горения древесины постепенно, по мере образования на ее поверхности слоя угля, уменьшается и наступает фаза беспламенного горения этого угля. После выгорания слоя угля вновь интенсивно выделяются горючие газы и появляется пламя. Затем образуется новый слой угля и наступает фаза беспламенного горения и т. д.

По окончании ряда циклов пламенного и беспламенного горения, когда вся древесина разложилась, происходит горение остатков древесного угля без выделения пламени.
Следует отметить, что при длительном нагревании древесины в последней возникают процессы разложения и окисления, что может снизить температуру воспламенения древесины до 110—130 °С.

Пожарная опасность жидких горючих веществ

Пожарная опасность горючих жидкостей определяется температурой вспышки паров испаряющейся жидкости при (внесении источника тепла. Температура вспышки представляет собой наименьшую температуру, при которой пары горючего вещества создают над его поверхностью паровоздушную смесь, воспламеняющуюся при внесении источника тепла (например, открытого огня).

За время вспышки поверхность горючей жидкости не прогревается до температуры, достаточной для интенсивного испарения жидкости, и дальнейшее горение прекращается. Если температура жидкости в момент вспышки окажется достаточной для того, чтобы вслед за вспышкой последовало горение, то такую температуру называют температурой воспламенения горючей жидкости.

Чем ниже температура вспышки горючей жидкости, тем больше пожарная опасность По существующей классификации все горючие жидкости разделяются на два класса. К I классу относятся жидкости с температурой вспышки менее 45°С (например, бензин, спирт, эфир, керосин и др.), а ко II классу—жидкости с температурой вспышки более 45 0 С (например, масла, мазуты и др.). Огнеопасные жидкости I класса относят к легковоспламеняющимся жидкостям, а жидкости II класса — к горючим.

Следует отметить, что пожарная опасность ряда твердых веществ (например, нафталин, фосфор, камфора и др., которые испаряются при нормальной температуре) также характеризуется температурой вспышки.

У легковоспламеняющихся жидкостей небольшая (1—2°С) разница между температурой вспышки паров и температурой воспламенения. У горючих жидкостей эта разница достигает 30 0 С и более.

Пожарная опасность жидкостей увеличивается с понижением температуры вспышки, температуры воспламенения и самовоспламенения, а также с увеличением скорости испарения и уменьшением нижнего предела концентрации взрывоопасной смеси паров жидкости с воздухом.

Пожарная опасность пыли

Пыль горючих веществ в состоянии аэрогеля (в виде отложений пыли) может тлеть и гореть, а находясь в форме аэрозоля, т. е. будучи взвешенной в воздухе, она способна взрываться, образуя взрывоопасные пылевоздушные смеси. Горению пыли в значительной мере способствует адсорбция пылью кислорода воздуха. Взрывоопасность пыли повышается с уменьшением частиц пыли вследствие увеличения ее удельной поверхности. Температура самовоспламенения горючей пыли обычно колеблется в пределах 700—900°С, но некоторые виды пыли имеют относительно низкую температуру самовоспламенения (например, сажа взрывается при 360 °С).

Пределы взрывоопасной концентрации пыли зависят от влажности, дисперсности, температуры и мощности источника тепла и других факторов. Развиваемое при взрывах пыли давление обычно не превышает 0,4—0,6 мн/м 2 (4—6 атм).

Самовозгорание

Некоторые вещества обладают способностью адсорбировать газы и кислород воздуха, вследствие чего увеличивается скорость окислительных реакций и повышается температура этих веществ. Если при этом создаются условия, когда приход тепла будет больше отдачи в окружающую среду, то в результате непрерывного повышения температуры такие вещества могут гореть. Процесс, при котором горение (веществ происходит в результате самонагревания, называется самовозгоранием. Ясно, что вещества, у которых процесс самовозгорания начинается при низкой температуре, представляют повышенную пожарную опасность.

Вещества, способные к самовозгоранию, разделяют на несколько групп. К I группе относятся вещества растительного происхождения, например влажное зерно, сено, опилки. Причиной повышения температуры для них являются биологические процессы; в дальнейшем повышение температуры происходит вследствие окисления, что приводит к самовозгоранию таких веществ.

Ко II группе относят каменные и бурые углы (кроме тощих углей) и торф. Самовозгоранию торфа способствуют протекающие в нем биологические процессы. Торф самовозгорается при относительно невысокой температуре (120- 140°С).

К III группе относятся масла и жиры, причем повышенную пожарную опасность представляют масла растительного происхождения (льняное масло и др.), так как они содержат непредельные органические соединения, которые могут окисляться и полимеризоваться. Животные и минеральные масла представляют значительно меньшую пожарную опасность.

Опасность самовозгорания резко возрастает в тех случаях, когда масла попадают на обтирочные материалы и на спецодежду. Образующаяся на поверхности этих материалов пленка масла адсорбирует кислород воздуха, вследствие чего происходит повышение температуры, возможно воспламенение материалов. В практике металлургических заводов известны случаи пожаров из-за самовозгорания замасленных обтирочных материалов и спецодежды.

К IV группе относятся химические вещества и некоторые соединения. К этой группе относятся вещества, способные к самовозгоранию при их контакте с воздухом, например фосфористый водород, кремниевый водород, белый фосфор, арсины, пыль алюминия и цинка, свежеприготовленные древесный уголь и сажа, металлоорганические соединения. Сульфиды железа FeS и Fe2S3 обладают пирофорными свойствами. При соприкосновении этих сульфидов с воздухом температура их повышается настолько высоко, что является источником воспламенения горючих веществ.

Ряд веществ воспламеняется при соприкосновении с водой, например щелочные металлы, карбиды кальция и щелочных металлов и др. Воспламенение возникает от того, что в результате взаимодействия этих веществ с водой образуются горючие газы, которые воспламеняются вследствие экзотермичности реакций. В сжатом кислороде самовозгораются масла и жиры.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *