чем считать rfid метку

Как выбрать считыватель дальнего действия RFID

RFID — метод радиочастотной идентификации объектов посредством считывания информации с меток. Интеллектуальные носители постепенно приходят на смену штрихкодам, обеспечивая эффективный учет и отслеживание объектов. В этой статье расскажем о сфере применения RFID, критериях выбора сканеров и особенностях работы с тегами.

Где применяют RFID-считыватели дальнего действия

С каждым годом сфера использования радиочастотной идентификации расширяется. Сегодня применение RFID-технологии не ограничивается следующими направлениями:

Виды считывателей RFID меток на расстоянии

Все ридеры подразделяют на две группы — стационарные и мобильные. У каждой категории RFID-систем свои отличительные характеристики, плюсы и минусы.

Стационарное оборудование

Системы RFID стационарного типа — самые производительные интеррогаторы, они проводят быструю обработку больших объемов информации на значительных рабочих радиусах, имеют постоянную связь с программой контроля и учета. Высокая эффективность достигается благодаря наличию в конструкции мощных процессоров.

Тип установки стационарных систем различен – все зависит от выбранной модификации. Есть интеррогаторы для крепления на складские транспортные средства (например, погрузчики, штабелеры). Доступны метки для установки на рабочем месте маркировщика. Представлены системы для крепления на стенах, потолках, дверях. Некоторые модификации монтируют в стол или рядом с конвейером на пути следования товара по транспортерной ленте.

К недостаткам стационарных интеррогаторов относят большие габариты и вес, отсутствие поддержки автономного режима работы.

1. Задай вопрос нашему специалисту в конце статьи.
2. Получи подробную консультацию и полное описание нюансов!
3. Или найди уже готовый ответ в комментариях наших читателей.

Мобильное оборудование

Портативные системы считывания RFID обладают компактными размерами, оснащены встроенными антеннами и функционируют автономно за счет наличия аккумулятора. Заряда в среднем хватает на 4—5 часов непрерывной работы. В комплект большинства моделей входят сменные АКБ, поэтому в течение всего дня можно пользоваться аппаратурой.

Мобильные ридеры оснащены процессором, жестким диском и оперативной памятью, что позволяет устанавливать необходимый софт для синхронизации и эффективной работы с программным обеспечением компьютера.

Относятся портативные RFID-ридеры к устройствам индустриального класса, поэтому имеют прочный корпус с высокой степенью защиты:

К недостаткам мобильных интеррогаторов относят небольшой диапазон действия по сравнению со станционными моделями и ограниченную мощность источника питания, что требует использования дополнительных АКБ.

Источник

Какие бывают RFID протоколы и как их похекать с помощью Flipper Zero

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid метку

Flipper Zero — проект карманного мультитула для хакеров в формфакторе тамагочи, который мы разрабатываем. Предыдущие посты [1],[2],[3],[4],[5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19]

RFID – это технология для бесконтактных радио-меток, используемых повсюду: в домофонах, платежных картах, проездных, пропусках в офисы, для учета домашних животных, автомобилей и т.д. Есть два основных типа RFID меток, которые мы используем в обычной жизни: низкочастотные и высокочастотные.

Как устроены RFID-метки

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid метку
RFID чип включается, когда на него подается питание от радиополя считывателя

RFID-метка обычно не имеет собственного питания. Пока она не находится в поле действия считывателя, чип внутри метки полностью выключен. Как только метка попадает в зону действия считывателя, ее антенна поглощает энергию излучения считывателя, и на чип подается питание. В этот момент чип включается и начинает общение со считывателем. При этом, антенна RFID-метки настроена только на определенную частоту, поэтому метка сможет активироваться только в поле действия подходящего считывателя.

Какие бывают RFID-метки

Внешний вид RFID-меток может быть совершенно разный: толстые/тонкие карты, брелоки для домофонов, браслеты, кольца, монеты и даже наклейки. При этом только по внешнему виду нельзя однозначно сказать, на какой частоте и по какому протоколу работает метка.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid метку
Внешне RFID-метки могут выглядеть по-разному

Часто производители RFID-брелков используют одинаковые пластиковые корпуса для меток разных частотных диапазонов, поэтому бывает, что две метки, выглядящие абсолютно одинаково, работают в разных диапазонах. Это важно учитывать, когда пытаетесь определить на глаз, что за метка перед вами. В статье мы будем рассматривать 2 самых популярных типа RFID-меток, которые используются в системах контроля доступа. Флиппер поддерживает оба этих диапазона.

Существует множество RFID-протоколов, работающих на других частотах, вроде UHF 840-960 МГц. Они применяются для отслеживания грузов, оплаты проезда на платных дорогах, отслеживания диких животных при миграции и т.д. Эти метки могут иметь собственную батарею и работать на расстояниях от нескольких метров, до нескольких километров. При этом, они достаточно редкие, и в привычном обиходе почти не встречаются. В статье мы их рассматривать не будем.

Отличия RFID 125 кГц и 13.56 МГц

Проще всего понять в каком диапазоне работает RFID-метка по виду антенны. У низкочастотных меток (125 кГц) антенна сделана из очень тонкой проволоки, буквально тоньше волоса, и огромного числа витков. Поэтому такая антенна выглядит как цельный кусок металла. У высокочастотных карт (13.56 МГц) антенна имеет намного меньше витков и более толстую проволоку или дорожки. Так что между витками видны зазоры.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуЕсли просветить карту фонариком, можно узнать на какой частоте она работает

Чтобы увидеть антенну внутри RFID-карты, можно просветить ее фонариком. Если у антенны всего несколько крупных витков — это скорее всего высокочастотная карта. Если антенна выглядит как цельный кусок металла без просветов — это низкочастотная карта.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуАнтенны у низкочастотных карт из очень тонкой проволоки, а у высокочастотных из более толстой

Низкочастотные метки обычно используются в системах, которые не требуют особенной безопасности: домофонные ключи, абонементы в спортзал и т.д. Из-за большей дальности действия их удобно применять в качестве пропусков на автомобильные парковки: водителю не нужно близко прислонять карту к считывателю, она срабатывает издалека. При этом, низкочастотные метки очень примитивны, у них низкая скорость передачи данных, из-за этого в них нельзя реализовать сложный двусторонний обмен данными, вроде проверки баланса и криптографии. Низкочастотные метки передают только свой короткий ID без всяких средств аутентификации.

Высокочастотные метки используются для более сложного взаимодействия между картой и считывателем, когда нужна криптография, долгий двусторонний обмен, аутентификация и т.д., например для банковских карт, надежных пропусков.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуСравнение RFID-меток 125 кГц и 13,56 МГц

Низкочастотные метки 125 кГц

Высокочастотные метки 13,56 МГц

Как устроен RFID во Flipper Zero

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуРабота RFID-антенны во Flipper Zero

Флиппер поддерживает низкочастотные и высокочастотные метки. Для поддержки обеих частот, мы разработали двухдиапазонную RFID антенну, расположенную на нижней крышке устройства.

Для высокочастотных протоколов (NFC) во Флиппере установлен отдельный NFC-контроллер ST25R3916. Он реализует всю физическую часть работы с картами: чтение, эмуляцию. Низкочастотные протоколы 125 kHz у нас реализованы полностью программно — Флиппер «дрыгает» ногой микроконтроллера для передачи и принимает низкочастотный сигнал через аналоговую схему прямо на ногу GPIO.

[Видео] Расположение платы с антеннами RFID во Flipper Zero

Сверху плата с антеннами экранирована слоем ферромагнетика — он изолирует остальную электронику от наводок, перенаправляя высокочастотное поле в другую сторону, что дополнительно увеличивает дальность работы.

Антенна на этапе сборки вклеивается в нижнюю крышку Флиппера и подключается к плате через подпружиненные контакты. Это сильно облегчает процесс сборки, так как не требует подключения шлейфов или UFL разъемов к антенной плате.

Низкочастотные протоколы 125 кГц

В низкочастотных метках хранятся короткие ID карты, длиной в несколько байт. Эти ID прописываются в базу данных контроллера или домофона. При этом карта просто передает свой ID любому желающему, как только на нее подано электричество. Часто ID карты написан на ней самой и его можно сфотографировать и ввести вручную во Флиппер.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid метку

В реальной жизни низкочастотных протоколов намного больше, но все они так или иначе являются вариацией этих трех, по крайней мере используют ту же модуляцию на физическом уровне. На момент написания этой статьи Флиппер умеет читать, сохранять, эмулировать и записывать все три этих протокола. Наверняка найдутся низкочастотные протоколы, которые пока не поддерживаются Флиппером, но так как подсистема 125 kHz реализована программно, мы сможем добавить новые протоколы в будущем.

EM-Marin

[Видео] Считывание Флиппером меток EM-Marin

В СНГ наиболее распространен RFID-формат EM-Marin. Он прост и не защищен от копирования. EM-Marin обычно выполнен на базе чипа EM4100. Существуют и другие чипы, работающие по тому же принципу, например EM4305 – в отличие от EM4100 его можно перезаписывать.

Для считывания низкочастотной карты нужно зайти в меню Флиппера 125 kHz RFID —> Read и приложить метку к задней крышке. Флиппер определит протокол метки самостоятельно и отобразит его название вместе с ID карты. Так как за один проход, Флиппер пытается по очереди пробовать все типы протоколов, это занимает время. Например, для считывания карт Indala требуется несколько секунд.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуУникальный код EM-Marin на карте и на Флиппере

Уникальный код EM4100 состоит из 5 байт. Иногда он написан на RFID-карте. Уникальный код может быть записан сразу в нескольких форматах: десятичном и текстовом. Флиппер использует шестнадцатеричный формат при отображении уникального кода. Но на картах EM-Marin обычно написаны не все 5 байт, а только младшие 3 байта. Остальные 2 байта придется перебирать, если нет возможности считать карту.

[Видео] Открываем домофон, эмулируя RFID 125 кГц

Некоторые домофоны пытаются защищаться от дубликатов ключей и пытаются проверять, не является ли ключ записанным на болванку. Для этого домофон перед чтением посылает команду записи, и, если запись удалась, считает такой ключ поддельным. При эмуляции ключей Флиппером домофон не сможет отличить его от оригинального ключа, поэтому таких проблем не возникнет.

HID Prox

[Видео] Считывание Флиппером меток HID26

Компания HID Global — самый крупный производитель RFID оборудования в мире. У них есть несколько фирменных низкочастотных и высокочастотных RFID-протоколов. Наиболее популярный низкочастотный HID-протокол это 26-битный H10301 (HID26, он же HID PROX II). Уникальный код в нем состоит из 3 байт (24 бита), еще 2 бита используются для контроля четности (проверки целостности).

На некоторых HID26 картах написаны цифры – они обозначают номер партии и ID карты. Полностью узнать 3 байта уникального кода по этим цифрам нельзя, на карте написаны лишь 2 байта в десятичной форме: Card ID.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуСтруктура данных HID26 на карте и при чтении Флиппером

Из низкочастотных протоколов семейства HID, Флиппер пока умеет работать только с HID26. В дальнейшем мы планируем расширить этот список. HID26 наиболее популярен, так как совместим с большинством СКУДов.

[Видео] Флиппер эмулирует низкочастотную карту и открывает турникет

Indala

RFID-протокол Indala был разработан компанией Motorola, и потом куплен HID. Это очень старый протокол, и современные производители СКУД его не используют. Но в реальной жизни Indala все еще изредка встречается. На момент написания статьи, Флиппер умеет работать с протоколом Indala I40134.

[Видео] Флиппером читает карту Indala

Так же, как HID26, уникальный код карт Indala I40134 состоит из 3 байт. К сожалению, структура данных в картах Indala это не публичная информация, и все, кто вынужден поддерживать этот протокол, сами придумывают, какой порядок байт выбрать, и как интерпретировать сигнал на низком уровне.

Все эти протоколы настолько простые, что ID карты можно просто ввести вручную, не имея оригинальной карты под рукой. Можно тупо прислать текстовый ID карты, и владелец Флиппера сможет ввести его вручную.

Ввод ID карты вручную

[Видео] Ввод ID карты Indala вручную без оригинальной карты

Запись болванки 125 кГц

[Видео] Запись болванки T5577

Низкочастотные болванки типа T5577 имеют много разновидностей. Например, существуют варианты, которые маскируются от проверок считывателей, которые пытаются выяснить, является ли эта карта клоном или нет.

Высокочастотные карты 13,56 МГц

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid метку

Высокочастотные метки 13,56 МГц состоят из целого стека стандартов и протоколов — весь этот стек принято называть технологией NFC, что не всегда правильно. Основная часть протоколов основана на стандарте ISO 14443 — это базовый набор протоколов физического и логического уровня, на котором стоят высокоуровневые протоколы, и по мотивам которых созданы альтернативные низкоуровневые стандарты, например ISO 18092.

Наиболее часто встречаемой является реализация ISO 14443-A, ее используют почти все исследуемые мною проездные, пропуска и банковские карты.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуУпрощенная архитектура технологии NFC

Упрощенно архитектура NFC выглядит так: на низкоуровневой базе ISO 14443 реализован транспортный протокол, он выбирается производителем. Например, компания NXP придумала свой высокоуровневый транспортный протокол карт Mifare, хотя на канальном уровне, карты Mifare основаны на стандарте ISO 14443-A.

Флиппер умеет взаимодействовать как с низким уровнем протоколов ISO 14443, так и с протоколами передачи данных Mifare Ultralight и EMV банковских карт. Сейчас мы работаем над добавлением поддержки протоколов Mifare Classic и NFC NDEF. Подробный разбор применяемых стандартов и протоколов NFC заслуживает большой отдельной статьи, которую мы планируем сделать позднее.

Голый UID стандарта ISO 14443-A

[Видео] Чтение UID высокочастотной метки неизвестного типа

Все высокочастотные карты, работающие на базе ISO 14443-A, имеют уникальный идентификатор чипа — UID. Это серийный номер карточки, подобно MAC-адресу сетевой карты. UID бывает длиной 4, 7 и очень редко 10 байт. UID не защищен от чтения и не является секретным, иногда он даже написан на карточке.

В реальности существуют много СКУД-ов, использующих UID для авторизации доступа. Такое встречается, даже когда RFID-метки имеют криптографическую защиту. По уровню безопасности это мало чем отличается от тупых низкочастотных карт 125 кГц. Виртуальные карты (например, Apple Pay) намеренно используют динамический UID, чтобы владельцы телефонов не использовали платежное приложение как ключ для дверей.

[Видео] iPhone каждый раз генерирует случайный виртуальной UID карты в ApplePay

Так как UID это низкоуровневый атрибут, то возможна ситуация, когда UID прочитан, а высокоуровневый протокол передачи данных еще неизвестен. Во Флиппере реализованы чтение, эмуляция и ручное добавление UID, как раз для примитивных считывателей, которые используют UID для авторизации.

Различие чтения UID и данных внутри карты

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуЧтение NFC разделено на два типа – низкоуровневое и высокоуровневое

Чтение меток 13,56 МГц во Флиппере можно разделить на 2 части:

Для чтения карты с помощью конкретного высокоуровневого протокола нужно перейти в NFC —> Run special action и выбрать необходимый тип метки.

Mifare Ultralight

[Видео] Чтение данных с карты Mifare Ultralight

Mifare — семейство бесконтактных смарт-карт, имеющих собственные разные высокоуровневые протоколы. Mifare Ultralight — самый простой тип карт из семейства. В базовой версии он не использует криптографическую защиты и имеет только 64 байта встроенной памяти. Флиппер поддерживает чтение и эмуляцию Mifare Ultralight. Такие метки иногда используют как домофонные брелки, пропуска и проездные. Например, московские транспортные билеты «единый» и «90 минут» выполнены как раз на основе карт Mifare Ultralight.

Банковские карты EMV (PayPass, Apple Pay)

[Видео] Чтение данных из банковской карты

EMV (Europay, Mastercard, and Visa) — международный набор стандартов банковских карт. Подробнее про работу бесконтактных банковских карт можно почитать в статье Павла zhovner Как украсть деньги с бесконтактной карты и Apple Pay.

Банковские карты — это полноценные смарт-карты со сложными протоколами обмена данными, поддержкой ассиметричного шифрования. Помимо чтения UID, с банковской картой можно обменяться сложными данными, в том числе вытащить полный номер карты (16 цифр на лицевой стороне карты), срок действия карты, иногда имя владельца и даже историю последних покупок.

Стандарт EMV имеет разные высокоуровневые реализации, поэтому данные, которые можно достать из карт могут отличаться. CVV (3 цифры на обороте карты) считать нельзя никогда.

Банковские карты защищены от replay-атак, поэтому скопировать ее Флиппером, а затем эмулировать и оплатить покупку в магазине у вас не получится.

Виртуальная карта ApplePay VS Физическая банковская карта

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуСравнение безопасности виртуальных и физических банковских карт

В сравнении с пластиковой банковской картой, виртуальная карта в телефоне выдает меньше информации и более безопасна для платежей оффлайн.

Преимущества виртуальной карты Apple Pay, Google Pay:

Поддержка банковских карт во Флиппере сделана исключительно для демонстрации работы высокоуровневых протоколов. Мы не планируем никак развивать эту функцию в дальнейшем. Защита бесконтактных банковских карт достаточно хороша, чтобы не переживать о том, что устройства вроде Флиппера могут быть использованы для атак на банковские карты.

Наши соцсети

Узнавайте о новостях проекта Flipper Zero первыми в наших соцсетях!

Источник

RFID идентификация

Предисловие

В современном мире, несомненно, ценится возможность быстро и просто получать большие объёмы информации. Каждый год ведутся разработки для создания удобных и компактных носителей для хранения, передачи и защиты тех или иных данных.

На сегодняшний день человечество сделало большой шаг в эру цифровых технологий, обеспечив практически каждого человека возможностью выхода в Интернет. Цифровизируется всё: начиная со старых рукописных книжек, заканчивая документами и деньгами. Люди всё меньше пользуются наличными, отдавая предпочтение бесконтактным банковским картам, в государственных ведомствах всё больше говорят о введении единых электронных паспортов с доступом к любой информации о человеке за два клика. Больше не нужно проводить часы в очередях за получением той или иной бумажки – можно просто подать заявление через сайт. Нельзя отрицать, что подобные изменения упрощают жизнь простого человека. И касаются эти удобства не только таких вещей как документы. Это касается целых отраслей промышленности.

В этой статье мы затронем тему RFID индефикации – технологии, которая получила широкое применение в десятках сфер производства и, что самое главное, которой пользуется каждый день практически каждый из вас.

Так что же такое RFID и с чем его едят?

RFID (Radio-frequency identification) в переводе с английского означает радиочастотную идентификацию. Иными словами, это способ опознания объектов, при котором радиосигналы записывают или считывают информацию, хранящуюся на RFID-метках (ещё их называют трансподерами).

RFID относится к беспроводной системе, состоящей из двух компонентов: метки и считывателя. Считыватель – это устройство, которое имеет одну или несколько антенн, которые излучают радиоволны и принимают сигналы обратно от RFID-метки.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуОбщая схема работы RFID

RFID-метки могут хранить различную информацию от одного серийного номера до нескольких страниц данных. Считыватели могут быть мобильными (отсюда и название «транспондеры»), чтобы их можно было переносить в руке, или они могут быть установлены на столбе или над головой.

Классификация RFID

По типу источника питания

Пассивные транспондеры RFID получают энергию для передачи данных только от электромагнитного поля устройства записи-считывания RFID.

Кроме того, существует промежуточный тип, представленный полуактивными или полупассивными транспондерами, которые, с одной стороны, имеют собственный источник питания, но сами не функционируют как отправители. Электропитание транспондера RFID осуществляется через батарею, и, следовательно, нет необходимости полагаться на характеристики электромагнитного поля, но ответ создается посредством модуляции поля, которое не усиливает поле дальше.

По типу используемой памяти

RO (Read Only) – в эти метки информация записывается лишь единожды. Их очень удобно использовать для единоразовой идентификации.

WORM (Write Once Read Many) – содержит блок однократно записываемой памяти, которую можно считать много раз.

RW (Read and Write) – транспондеры, в которые можно записывать и считывать данные много раз.

По рабочей частоте

Низкочастотные (LF = 125 кГц)

Эта свободно доступная полоса частот характеризуется низкой скоростью передачи и короткими расстояниями передачи. В большинстве случаев создание этих систем дешево, легко в обращении и не требует регистрации, а также дополнительных сборов. Транспондеры RFID используют электромагнитные волны ближнего поля и получают энергию через индуктивную связь. Преимущество состоит в том, что транспондеры RFID в этой полосе частот относительно устойчивы к металлам или жидкостям, что делает их подходящими для использования при идентификации животных и людей. Для этих транспондеров свойственны коллизии – ошибки одномоментной передачи информации в среде с коллективным доступом.

Высокочастотные (HF 13,56 МГц)

Эти системы действительно имеют очень высокие скорости и дальности передачи. Из-за более коротких длин волн в качестве антенны вместо катушки достаточно диполя, для лучевой оптики достаточно расширения поля, что, в свою очередь, обеспечивает целевое распространение. Кроме того, UHF-транспондеры в основном производятся в виде фольги, что полезно для обработки больших объемов в ролевом процессе.

Также стоит упомянуть в этом контексте, что некоторые полосы частот в микроволновом спектре еще не стали доступными с финансовой точки зрения рентабельности, и, более того, они могут подпадать под действие местных разрешительных ограничений.

Применение

Пожалуй, рассмотрим применение в сфере медицины.

Системы RFID используют радиоволны на нескольких разных частотах для передачи данных. В медицинских учреждениях и больницах технологии RFID включают следующие приложения:

Обнаружение выхода из постели и обнаружение падения

Обеспечение того, чтобы пациенты получали правильные лекарства и медицинские устройства.

Предотвращение распространения поддельных лекарств и медицинских изделий.

Наблюдение за пациентами

Предоставление данных для систем электронных медицинских карт

И это использование только в одной сфере!

Так же технология применяется в:

Транспортной и складской логистике, предотвращение краж в торговых залах;

Системах контроля и управления доступом

Системы управления багажом

Преимущества использования технологии

Каждая микросхема имеет уникальный серийный номер, который назначается только один раз во всем мире (UID или TID). Это гарантирует четкую назначаемость в рамках отдельного продукта и обеспечивает индивидуализацию всего диапазона продукта.

Перезаписываемая память данных в микросхеме. Информация на носителе данных RFID может быть изменена, стерта или дополнена в любое время. Данные о продукте, обслуживании, производстве или обслуживании доступны непосредственно на продукте. (Преимущество перед обычными штрих-кодами)

Связь, которая осуществляется между носителем данных RFID и системой записи-считывания без требования визуального контакта, обеспечивает устойчивость к грязи за счет размещения в защищенных местах, а также для невидимой интеграции в существующие продукты и упрощения процесса. оптимизация.

Высокая скорость передачи данных составляет 100% первого прохода в случае штрих-кодов.

Возможность одновременного считывания нескольких носителей данных RFID за один рабочий этап (массовый захват), что ускоряет процессы.

Всё ли так хорошо?

Использование RFID вызвало серьезные споры, и некоторые защитники конфиденциальности потребителей инициировали бойкот продукции. Эксперты по защите прав потребителей Кэтрин Альбрехт и Лиз Макинтайр, два выдающихся критика, назвали две основные проблемы конфиденциальности в отношении RFID, которые заключаются в следующем:

Поскольку владелец предмета может не знать о наличии метки RFID, а метку можно прочитать на расстоянии без ведома человека, конфиденциальные данные могут быть получены без согласия.

Если отмеченный товар оплачивается кредитной картой или в сочетании с использованием карты лояльности, то можно будет косвенно установить личность покупателя, прочитав глобальный уникальный идентификатор этого товара, содержащийся в теге RFID. Это возможно, если человек, наблюдающий, также имел доступ к данным карты лояльности и кредитной карты, а человек с оборудованием знает, где будет покупатель.

Цели безопасности

При обсуждении свойств безопасности различных конструкций RFID полезно сформулировать четкие цели безопасности.

чем считать rfid метку. Смотреть фото чем считать rfid метку. Смотреть картинку чем считать rfid метку. Картинка про чем считать rfid метку. Фото чем считать rfid меткуБезопасность

    Метки (в дальнейшем «теги») не должны ставить под угрозу конфиденциальность их владельцев.

    Информация не должна передаваться неавторизованным читателям и не должна дать возможность создания долгосрочных ассоциаций отслеживания между тегами и их владельцами.

    Чтобы предотвратить отслеживание, владельцы должны иметь возможность обнаруживать и отключать любые теги, которые они несут.

    Общедоступные выходные данные тегов должны быть случайными или легко изменяемыми, чтобы избежать долгосрочных ассоциаций между тегами и держателями.

    Содержимое частного тега должно быть защищено контролем доступа и, если предполагается, что каналы опроса небезопасны, шифрованием.

    И теги, и читатели должны доверять друг другу. Спуфинг любой из сторон должен быть практически невозможным.

    Помимо обеспечения механизма контроля доступа, взаимная аутентификация между тегами и считывателями также обеспечивает определенную степень доверия. Атаки с перехватом сеанса и повторным воспроизведением также вызывают беспокойство. Индукция отказа или прерывание питания не должны нарушать протоколы или открывать окна для попыток взлома. И теги, и считыватели должны быть устойчивы к повторному воспроизведению или атакам типа «злоумышленник в середине».

    Способы обезопасить использование технологии RFID

    Предположим, что для устранения этих недостатков мы применяем политику удаления уникальных серийных номеров в точках продажи. Бирки, хранимые потребителями, по-прежнему будут содержать информацию о коде продукта, но не уникальные идентификационные номера. К сожалению, отслеживание все еще возможно путем связывания «совокупностей» определенных типов тегов с идентификаторами держателя. Например, уникальная склонность к обуви Gucci с RFID-меткой, часам Rolex и сигарам Cohiba может выдать вашу анонимность. Более того, этот паттерн по-прежнему не предлагает механизма доверия.

    Обеспечение заявленных целей безопасности требует реализации контроля доступа и аутентификации. Криптография с открытым ключом предлагает решение. В каждый тег могут быть встроены определенный (тип) открытый ключ считывателя и уникальный закрытый ключ. Во время опроса метки и считыватели могут взаимно аутентифицировать друг друга с помощью этих ключей, используя хорошо понятные протоколы. Чтобы предотвратить подслушивание в зоне опроса, теги могут шифровать свое содержимое, используя случайный одноразовый номер, чтобы предотвратить отслеживание. К сожалению, поддержка надежной криптографии с открытым ключом выходит за рамки ресурсов недорогих (0,05–0,10 долл. США) тегов, хотя существуют решения для более дорогих тегов.

    Симметричная аутентификация сообщений требует, чтобы каждый тег имел уникальный ключ для считывателя или чтобы ключ был совместно использован пакетом тегов. Для поддержки уникального ключа для каждого тега необходимы сложные накладные расходы на управление ключами. Если ключи должны быть общими, теги должны быть устойчивы к физическим атакам, описанным в; в противном случае компрометация одного эффективного тега ставит под угрозу всю партию. Внедрение защищенной памяти на недорогой бирке с числом логических вентилей, исчисляемым сотнями, является сложной задачей, особенно в свете сложности защиты памяти на смарт-картах с относительно большим количеством ресурсов. Даже поддержка надежного симметричного шифрования является проблемой в краткосрочной перспективе.

    Рассматривая краткосрочные ограничения на ресурсы недорогих тегов, мы обсуждаем простую схему безопасности RFID, основанную на односторонней хэш-функции. На практике будет достаточно аппаратно-оптимизированной криптографической хеш-функции, если предположить, что она может быть реализована с затратой значительно меньших ресурсами, чем симметричное шифрование. В этой схеме каждый тег с поддержкой хеширования содержит часть памяти, зарезервированную для «мета-идентификатора», и работает либо в разблокированном, либо в заблокированном состоянии. В разблокированном состоянии все функции и память метки доступны для всех в зоне опроса.

    Чтобы заблокировать тег, владелец вычисляет хеш-значение случайного ключа и отправляет его в тег как значение блокировки, то есть lock = hash (key). В свою очередь, тег сохраняет значение блокировки в области памяти мета-идентификатора и переходит в заблокированное состояние. Пока тег заблокирован, он отвечает на все запросы текущим значением мета-идентификатора и ограничивает все остальные функции. Чтобы разблокировать тег, владелец отправляет тегу исходное значение ключа. Затем тег хеширует это значение и сравнивает его с блокировкой, хранящейся под мета-идентификатором. Если значения совпадают, тег разблокируется.

    Каждый тег всегда отвечает на запросы в той или иной форме и, таким образом, всегда раскрывает свое существование. Теги будут оснащены физическим механизмом самоуничтожения и будут разблокированы только во время связи с авторизованным читателем. В случае потери питания или прерывания передачи теги вернутся в заблокированное состояние по умолчанию. Доверенный канал может быть установлен для функций управления, таких как управление ключами, отключение тегов или даже запись тегов, требуя физического контакта между устройством управления и тегом. Требование физического контакта для критически важных функций помогает защититься от саботажа беспроводной сети или атак типа «отказ в обслуживании».

    Механизм блокировки на основе хеша решает большинство наших проблем с конфиденциальностью. Контроль доступа к содержимому тегов ограничен держателями ключей.

    Хотя этот вариант проекта частично удовлетворяет некоторым желаемым свойствам безопасности, более безопасные реализации требуют нескольких разработок. Одним из ключевых направлений исследований является дальнейшее развитие и внедрение недорогих криптографических примитивов. К ним относятся хэш-функции, генераторы случайных чисел, а также криптографические функции с симметричным и открытым ключом. Недорогое аппаратное обеспечение должно минимизировать площадь схемы и энергопотребление без отрицательного влияния на время вычислений. Безопасность RFID может выиграть как от улучшений существующих систем, так и от новых разработок. Более дорогие устройства RFID уже предлагают симметричное шифрование и алгоритмы с открытым ключом. Адаптация этих алгоритмов для недорогих пассивных устройств RFID должна стать реальностью в считанные годы.

    Протоколы, использующие эти криптографические примитивы, должны быть устойчивыми к прерываниям питания и возникновению неисправностей. По сравнению со смарт-картами, RFID-метки обладают большей уязвимостью к этим типам атак. Протоколы должны учитывать нарушение беспроводных каналов или попытки перехвата связи. Сами теги должны плавно восстанавливаться после потери питания или прерывания связи без ущерба для безопасности. Постоянное совершенствование технологий неуклонно стирает границы между устройствами RFID, смарт-картами и повсеместными компьютерами. Исследования, направленные на повышение безопасности устройств RFID, помогут проложить путь к универсальной, безопасной повсеместно распространенной вычислительной системе. Все разработки, связанные с RFID-метками и другими встроенными системами, могут способствовать созданию надежной и безопасной инфраструктуры, предлагающей множество интересных потенциальных приложений.

    Выводы

    Таким образом, несомненными достоинствами RFID идентификации являются:

    Отсутствие необходимости прямого контакта или видимости

    Быстрота и точность

    Неограниченный срок эксплуатации

    Большой объем хранимой информации на маленьком носителе

    Источник

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *