чем разрушают горную породу

Разрушение горных пород

О природном геологическом явлении

РАЗРУШЕНИЕ ГОРНЫХ ПОРОД (а. rock breaking; н. Gesteinszerstorung; ф. destruction des roches, rupture des roches; и. destruccion de rocas) — нарушение сплошности природных структур горных пород (минеральных агрегатов, массивов горных пород) под действием естественных и искусственных сил. Разрушение — сложный физический или физико-химический процесс, характер развития которого зависит от величины и скорости приложения нагрузки, напряженного состояния объекта, его прочности и структурных свойств. В соответствии с этим разрушение может протекать на микро- и макроскопическом уровнях. Микроскопическое разрушение (размеры зоны разрушения до 1 мм) возникает в месте контакта разрушающего элемента с породой и сопровождается разрывом связей между зёрнами или нарушением химических связей в кристалле, микротрещинами, сдвигом вдоль поверхностей скольжения. Макроскопическое разрушение (размеры зоны разрушения 1 см и более) характеризуется развитием одной или многих трещин, нарушающих сплошность массивов в значительных объёмах. Во всех случаях разрушение начинается с процесса на микроскопическом уровне, при определённых условиях приобретающего макроскопические масштабы.

Естественное разрушение происходит в результате гравитационных (оползни, оседания грунтов, обвалы, осыпи), вулканических, глубинных тектонических процессов, выветривания, других природных процессов и явлений. На горных объектах естественное разрушение сопровождается обрушением подземных горных выработок, бортов карьеров и т.п. и представляет собой негативный фактор, влияние которого снижают выбором специальных технологических схем ведения работ, креплением выработок, закреплением грунтов и т.д. С другой стороны, нарушение сплошности полезных толщ (например, под действием горного давления) упрощает процессы выемки, а разрушение породных толщ интенсифицирует дегазацию горных пород.

Разрушение при бурении скважин имеет ряд особенностей и происходит путём отделения от массива частиц различной крупности в пределах плоскости забоя при наличии только одной обнажённой поверхности и возрастании с глубиной влияния горного давления. Наибольшее распространение получил механический способ бурения, при котором разрушение имеет объёмный, усталостный или поверхностный характер. В первом случае, когда напряжения в породе превышают предел её прочности, порода разрушается на некоторую глубину, которая сохраняется при перемещении породоразрушающих элементов по забою и может превышать их внедрение. Объёмное разрушение наиболее эффективно, т.к. требует наименьших удельных затрат энергии. Усталостное разрушение происходит при контактных напряжениях меньших, чем прочность породы, и наступает после многократного воздействия нагрузок в результате образования и постепенного развития в породе микротрещин. При ещё меньших значениях напряжений происходит поверхностное разрушение, когда породоразрушающие элементы, перемещаясь по забою без внедрения, истирают породу. Такой процесс наименее эффективен, т.к. ведёт к интенсивному износу инструмента и отличается высокими удельными энергозатратами.

Общие теоретические вопросы разрушение исследованы американскими учёными А. А. Гриффитсом, Г. Р. Ирвином, Э. Орованом, польским — В. К. Новацким, советскими — А. Ю. Ишлинским, С. Н. Журковым, Е. И. Шемякиным, Я. Б. Фридманом и др.; в аспекте горного дела — советскими учёными В. В. Ржевским, Л. И. Бароном, А. И. Бероном, Б. И. Воздвиженским, Н. И. Куличихиным, Н. И. Любимовым, В. И. Геронтьевым, М. М. Протодьяконовым и др.

Действие природных факторов

Солнечные лучи – главный фактор, способствующий разрушению твердых горных пород. Днем под палящими лучами солнца они нагреваются, а ночью, наоборот, охлаждаются. Вы знаете, что при нагревании твердые тела расширяются, а при охлаждении сжимаются. От смены температур на поверхности пород образуются трещины. В них попадает вода; замерзая, она расширяет трещины. Это повторяется множество раз, и с каждым разом трещины увеличиваются в размерах, и, наконец, от скальной поверхности откалываются куски.

Живые организмы также способствуют разрушению горных пород. Неприхотливые лишайники, мхи, поселившись на скалах, а затем отмирая, образуют слой почвы, на которой поселяются травы, кустарники, деревья. Корни деревьев, проникая в трещины горной породы, раздвигают их и разрушают. Свою незаметную, но важную роль играют микроорганизмы – бактерии. Они вырабатывают различные химические вещества, способствующие разрыхлению горных пород.

Обломочные горные породы

В результате выветривания у подножия гор на склонах постепенно скапливаются большие и маленькие обломки, или обломочные горные породы: щебень, галька, гравий, песок, глина.

Обломочные породы редко остаются на месте образования. Большей частью они переносятся водой, ветром, ледниками и отлагаются в другом месте. В процессе переноса обломочные породы продолжают разрушаться бурными горными потоками, сползающими ледниками, ветром. Перемещаясь, обломки ударяются друг о друга и перетираются так, что из них в конце концов образуются песок и глина.

Использование обломочных горных пород человеком

Человек широко использует обломочные породы в своей деятельности. Например, щебень, гальку, гравий применяют при строительстве железнодорожных насыпей, шоссейных дорог, для бетонных работ.

Песок – сыпучая горная порода различных цветов, образовавшаяся в процессе полного разрушения гранита или другой горной породы. Он используется в стекольной промышленности, в строительстве домов, автомобильных дорог.

Глина образуется вследствие разрушения полевого шпата и других горных пород. Она состоит из мельчайших частичек, которые, скапливаясь, образуют слои. При смачивании глины водой возникает пластичная масса; из нее можно лепить различные изделия. При высыхании глина становится твердой, как камень. Окраска глины, так же как и песка, может быть самой различной. Из ценнейшей белой глины изготавливают фарфоровые чашки, тарелки, фигурки. Обычная коричневая глина идет на изготовление кирпичей, разнообразной глиняной посуды, ею обмазывают печи в деревнях. Глина используется и как лечебное средство.

Источник

Как и чем разрушают горные породы

Как и чем разрушают горные породы

Мы показали, что есть ударный способ бурения и есть вращательный. Они существуют испокон веков и будут преобладать в обозримом будущем. Правда, в последнее время уже появились принципиально новые методы бурения скважин, такие как термический, взрывной, лазерный (о них мы поговорим чуть позже), но все они находятся в экспериментальной стадии и широкого распространения пока не имеют.

Для наглядности наиболее распространенные способы бурения можно изобразить в виде упрощенной схемы. На той же схеме укажем и основные области применения того или иного способа.

Ударно-канатное бурение

Как мы уже говорили, этот способ проходки настолько прост и эффективен, что не утратил своего значения и в нашу атомно-электроннуго эпоху. Как и тысячелетия назад, раскачивание тяжелого снаряда, удары по забою, вверх — вниз, вверх — вниз, без особых премудростей, без лазеров, зарядов и разрядов. Правда, станки, оборудование и соответственно скорости проходки существенно изменились и вполне отвечают требованиям нашего скоростного века.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Современный станок ударного бурения, в отличие от своих громоздких и неподвижных прародителей, предельно компактен и мобилен. Все его агрегаты и узлы смонтированы на единой раме, которая по своим размерам не превышает рамы небольшого грузового автомобиля. При переездах со скважины на скважину колесные станки обычно подцепляются к трактору, гусеничные двигаются самостоятельно, своим ходом.

Но если есть преимущества, то должны быть и недостатки (иначе других видов бурения просто не существовало бы). И недостатки есть. Они-то и ограничивают применимость ударно-канатного способа.

А во-вторых, ударное бурение возможно лишь в рыхлых, слабоустойчивых грунтах и вообще в породах небольшой твердости: в песках, мергелях, известняках и доломитах. В очень твердых скальных породах, таких как граниты, диабазы, кварцевые песчаники, заостренное долото очень быстро «садится», превращается в округлую болванку и углубка скважины прекращается. Так что монолитные скальные породы гораздо проще «стереть в порошок» (вращением да еще под давлением), чем раздолбить в своеобразной ступе.

Ударно-вращательное бурение

Вернемся на минутку к отверстию в камне. Его можно проделать кувалдой, а можно и молоточком.

В первом случае — большой груз с редкими ударами, во втором — малый груз с очень частыми ударами. Какой же способ более эффективен? Конечно, все зависит от прочности камня. В крепких скальных породах эффективен именно второй. В этом легко можно убедиться опытным путем.

Так вот, разница между канатным станком и бурильным молотком и заключается прежде всего в соотношении массы с частотой удара. В бурильном молотке боёк имеет массу всего-то полтора-два килограмма, не больше, зато ударяет он с большой частотой. Работает молоток от сжатого воздуха (потому и называется пневматическим), подаваемого по трубам и шлангам от компрессора. Следует отметить, что в подземных горных выработках используются механизмы только с электрическим либо с пневматическим приводом. Других нет. Система вентиляции в выработках под землей настолько сложна и громоздка, что применять там бензиновые или дизельные двигатели — непозволительная роскошь. Поэтому насосы, лебедки, поезда под землей — только электрические, все проходческие механизмы — как правило, пневматические, а потребляемый ими сжатый воздух заодно используется для дополнительной вентиляции.

Принцип работы бурильного молотка несложен. В чугунном корпусе находится камера для цилиндрического бойка. Камера снабжена системой воздушных клапанов, и боёк бегает в ней подобно маленькому поршню. При движении вперед боёк с силой ударяет по хвостовику направляющей штанги (или бура) и тут же отскакивает назад для новой атаки. На конце бура находится съемная коронка с запрессованной в ней пластиной из твердого сплава. Вот и вся конструкция.

Надо только добавить, что измельченная в пудру порода с силой выдувается из скважины (точнее, из «шпура») отработанным в молотке сжатым воздухом. Тот же воздух постоянно проворачивает штангу вокруг ее оси. Вращение штанги происходит очень медленно, всего несколько оборотов в минуту, и служит оно здесь не столько для истирания породы, сколько для изменения направления удара коронки, для равномерного кругового скалывания материала на забое.

Бурильный молоток является самым компактным и миниатюрным из всех типов буровых станков.

Правда, его старший брат — отбойный молоток — еще меньше, еще миниатюрнее. Да, да, тот самый отбойный молоток, которым при необходимости вскрывают асфальт, разрыхляют мерзлый грунт. Тот молоток, который мы видим в кадрах довоенного кино на плечах или в руках героев-стахановцев. Теперь в угольных шахтах он полностью вытеснен врубовой машиной.

При столь удивительных способностях бурильного молотка его размеры сравнительно невелики (масса около 30 кг), и при работе проходчик вполне может держать его в руках. Правда, долго удерживать в руках такую прыгающую двухпудовую игрушку — занятие не из приятных. Поэтому при работе с бурильным молотком применяется еще одно приспособление — пневмоподдержка.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 18. Бурильный молоток на пневмоподдержке.

Пневмоподдержка — это полая труба с поршнем, которым выталкивается из этой трубы (либо наоборот — втягивается в нее) длинный шток, упирающийся свободным концом в бурильный молоток (рис. 18). Пневмоподдержка действует от того же сжатого воздуха, который подается на молоток. При работе с пневмоподдержкой проходчик, регулируя подачу воздуха, без особых усилий ведет бур в заданном направлении.

Бурильный молоток очень оперативен. К примеру, двухметровый бур пробивает самую крепкую породу на всю свою длину за 10–15 минут. Поразительная скорость при таких размерах. Габаритные размеры установки, на которой размещается бурильный молоток, и жесткость конструкции (стальной бур вместо гибкого каната) позволяют широко использовать главное преимущество этого вида бурения — отсутствие ограничений в углах наклона и в направлениях скважин. Так, бурильным молотком можно проходить шпуры в любой плоскости, под любым углом: вниз, вправо, влево, куда угодно, хоть вертикально вверх — в кровлю выработки. Всепроникающий трудяга, имеющий столько достоинств одновременно! Он и прост, и компактен, и универсален, да еще и обеспечивает высокие скорости проходки…

А недостатки? Есть и они. Это прежде всего малые диаметры бурения (не более 33 мм) и незначительные глубины скважин-шпуров (не более 2–2,5 м). Именно поэтому бурильный молоток почти не применяется на поверхности. Зато в подземных выработках он вне конкуренции. Здесь его недостатки решительно никакой роли не играют.

Ударно-вращательный способ получил дальнейшее развитие в виде гидроударного бурения. Созданы забойные машины, приводимые в действие гидравлической энергией промывочной жидкости.

Вращательное бескерновое бурение

Применимость ударно-канатного бурения лимитируется твердостью пород, пневматического — глубиной скважин, не превышающей первых сотен метров. А более глубокие, многокилометровые скважины в разных породах? Они проходятся вращательным способом и, как правило, «сплошным забоем», т. е. с полным истиранием пород в скважине.

Надо сказать, что во всех случаях бескерновое бурение, т. е. бурение сплошным забоем, является самым производительным, самым скоростным. Размолотить в скважине твердыми сплавами, на высоких частотах вращения да еще под большой нагрузкой можно все что угодно: любые самые твердые породы, даже случайно уроненный в скважину металлический буровой или другой инструмент, скажем, кувалду, цепной ключ или стальную плашку. Силища у вращательного снаряда такая, что, как говорится, «черта в ступе» разотрет. И при том довольно быстро.

Выпилить столбик керна в горной породе, закрепить его в колонковой трубе и поднять на поверхность — гораздо более хлопотное и трудоемкое занятие. Именно поэтому керновое (колонковое) бурение применяется только в самых ответственных случаях: в сверхглубоких скважинах, при разведке рудных полезных ископаемых, при инженерно-геологических исследованиях, когда необходимо совершенно точно знать все текстурные и структурные особенности пород, характер их взаимоотношений, контакты между ними и многое другое, т. е. в тех случаях, когда нужно видеть (!) весь разрез и иметь ненарушенные образцы пород.

Ну а при разведке и отработке наиболее глубинных месторождений земной коры — нефтяных и газовых залежей? Основное назначение нефтяной скважины состоит в том, чтобы как можно быстрее пробиться сквозь многокилометровую толщу, отыскать залежь и после всего этого превратиться в надежный и долговечный вертикальный нефтепровод. Цель оправдывает средства, а самое эффективное средство здесь — это бескерновое бурение. Что же касается разреза по скважине, то иметь его, разумеется, тоже важно, но видеть вовсе не обязательно, вполне достаточно представить его себе по ряду косвенных признаков и данных. Для получения этих сведений есть масса различных методов.

Во-первых, разрушаемая в скважине порода поднимается вместе с промывочной жидкостью на земную поверхность. Эту породу (шлам) можно собрать, просушить, потом просмотреть под микроскопом-бинокуляром, проанализировать и получить совершенно определенные сведения о составе (только о составе, но не о строении и структурных особенностях) горных пород на той или иной глубине.

Во-вторых, в нефтяных скважинах проводится обширнейший комплекс разнообразных геофизических исследований — так называемый «каротаж». Здесь применяются электрический, магнитный, радиоактивный, термический, газометрический, акустический и многие другие виды каротажа (всего существует около 40 методов скважинной геофизики). Кроме того, применяется фотографирование стенок скважин — наиболее достоверный способ их документации.

Полученный по данным всех этих исследований разрез вдоль нефтяной скважины выглядит вполне представительно. Он содержит все сведения о составе и строении пород, пересеченных скважиной, об их пористости, проницаемости, о наличии в них углеводородных газовых включений, об электрических, магнитных, радиоактивных и других свойствах пород.

Какова же оснащенность нефтяной вышки? Поскольку нефтяное бурение является наиболее глубинным и самым ответственным среди остальных видов (за исключением сверхглубоких исследовательских скважин), то совершенно естественно, что здесь применяется самая передовая технология, используются самые мощные и производительные станки, самое современное оборудование.

Достаточно сказать, что в комплект среднеглубинной буровой установки для нефтяного бурения входят: пять дизелей мощностью по 400 л. с. каждый, две дизель-электростанции, лебедка грузоподъемностью до 300 тонн, стальная 40-метровая вышка (та самая, которую мы изображали на геологической эмблеме), два огромных насоса массой до 20 тонн каждый, солидные глино- и бетономешалки и еще множество всевозможного оборудования. На сменную вахту здесь одновременно выходят шесть опытных бурильщиков (это не считая геологического и обслуживающего персонала). Для сравнения заметим, что сменная вахта на колонковом поисково-разведочном бурении обычно состоит всего из двух человек — мастера-бурильщика и его помощника.

Так что нефтяная буровая — это по существу небольшое промышленное предприятие, месяцами и годами работающее в одном и том же месте, «на одной точке» — как говорят геологи.

Как осуществляется нефтяное бурение? На полую трубу небольшого диаметра (называемую направляющей или ведущей) навинчивают долото с запрессованными в нем твердыми сплавами либо алмазами, трубу закрепляют в роторе станка и начинают вращать. Для передачи нагрузки на долото ротор-вращатель снабжен специальной системой.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 19. Промывочная система при бурении скважины.

1—насос; 2 — бурильная колонна; 3 — долото; 4 — емкость для промывочной жидкости.

Одной из самых существенных составляющих процесса бурения является промывочная жидкость — вода либо глинистый раствор. Вода при вращательном бурении (так же как воздух при пневматическом) служит универсальным совместителем и выполняет несколько функций одновременно: вода охлаждает буровое долото, которое при таких скоростях и давлениях вполне может расплавиться от трения; вода выносит на поверхность разрушенную породу — шлам, а при достижении нефтяной залежи вода своей массой нейтрализует огромное внутри-пластовое давление, т. е. усмиряет рвущуюся из недр «нечистую силу» (вспомните апшеронский выброс, о котором мы говорили чуть раньше).

Промывочная жидкость при бурении подается внутрь бурильных труб, опускается по ним до забоя, омывает там буровое долото, забирает шлам и вместе с ним поднимается на земную поверхность (рис. 19). На поверхности раствор проходит через систему сит и отстойников, очищается в них от шлама, затем насыщается до нужной концентрации глиной и другими реагентами и снова насосами закачивается внутрь скважины. В итоге получается замкнутая циркуляционная система (очень напоминающая кровеносную), которая обеспечивает жизнеспособность скважины.

И вообще, буровой агрегат в целом подобен живому организму: двигатель станка с ротором — его сердце, гидравлическая система — мышцы, промывочная жидкость — кровь, колонна бурильных труб — своеобразная очень длинная рука. А буровое долото? Ну, это универсальное сверло в руках мощного и умного организма.

Поскольку горные породы по своим физико-механическим свойствам однообразием отнюдь не отличаются, то, естественно, и породоразрушающий инструмент (буровые наконечники) имеет великое множество самых разнообразных модификаций, различающихся по форме, размерам, оснащенности. Мягкие породы (такие как вязкие глины, пески, лёссы) разбуриваются лопатками и шнеками, напоминающими наконечник ручного ледобура; более твердые (сланцы, известняки, доломиты) — стальными пиками с запрессованными в них твердыми сплавами; самые твердые (граниты, габбро-диабазы, кварциты) — коническими шарошками либо долотами, в торце которых находятся те же твердые сплавы или матрица с техническими алмазами (рис. 20). В середине наконечника любого типа обязательно есть сквозное отверстие для прохода промывочной жидкости.

Наибольшим распространением при бескерновом бурении пользуется долото, снабженное несколькими (от двух до шести) вращающимися конусами — шарошками, поверхность которых усеяна закругленными сверху штырями твердых сплавов. Вершины конусов направлены внутрь — к продольной оси бурового снаряда (рис. 21). При бурении долото вращается с частотой до 800–900 оборотов в минуту, еще быстрее крутятся его шарошки (кстати, буровики в обиходе этим ласковым словом называют все шарошечное долото, а не только его конусы); в результате сферические твердые сплавы с силой истирают забой. На долото, а вместе с ним на шарошки передается сверху такая огромная нагрузка (десятки тонн), что устоять против такого натиска не может никакая самая твердая порода.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 20. Алмазное долото.

1 — корпус; 2—матрица с техническими алмазами.

При забуривании скважины первое долото имеет очень внушительные размеры: диаметр его около полуметра, а иногда и поболее того. Приходится учитывать, что в процессе бурения потребуется не раз и не два закреплять стенки скважины трубами для перекрытия встречаемых на различной глубине неустойчивых пород и при различных геологических осложнениях. Каждое же очередное крепление неминуемо должно сопровождаться уменьшением диаметра долота, в противном случае долото просто не пройдет сквозь обсадные трубы и не сможет отбуривать нижележащие породы. Так что любая нефтяная скважина в разрезе телескопична, и чем больше начальный диаметр бурения, тем длиннее можно составить телескоп из труб и тем больше шансов, что скважина (при любых неожиданностях и осложнениях) выполнит стоящую перед ней задачу. Вот зачем нужен большой диаметр при забуривании.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 21. Шарошечное долото.

1—корпус; 2 — шарошки с твердосплавными штырями.

Однако всему есть предел. И так уж полуметровое зубастое долото трудно даже представить себе, впрочем, работать с ним еще труднее, поднимать его приходится многотонной лебедкой, а привинчивать к буровому снаряду — с помощью другого, не менее мощного механизма. И таким вот долотом производится углубка скважины примерно до 100–200 м, во всяком случае, до тех пор, пока не будут пройдены приповерхностные, самые рыхлые и обводненные отложения (так называемые «наносы»). В пробуренное отверстие опускается первая колонна толстостенных обсадных труб диаметром около 400 мм (16 дюймов). Нижний конец этой колонны «приваривается» к монолитным породам скального основания.

Далее диаметр скважины уменьшается до 394 мм. Долото такого диаметра свободно проходит через поставленные выше обсадные трубы и пробуривает породы уже до глубины порядка 1000 м, после чего в скважину опускается вторая колонна обсадных труб, внутренний диаметр которых не превышает 300 мм. Соответственно уменьшается диаметр долота для последующего бурения. Ну и так далее. К концу бурения скважины диаметр ее уменьшается до 150–200 мм, а в пробуренном стволе стоят четыре-пять колонн обсадных труб, верхние торцы которых выходят на земную поверхность.

Начиная со второго диаметра (394 мм) скважина, как правило, проходится турбобуром. Турбобур представляет собой турбину, лопасти которой приводятся в действие промывочной жидкостью, подаваемой в скважину под большим давлением. Вместе с турбиной вращается и соединенное с ней буровое долото. Таким образом, на глубине вода (подобно воздуху при пневматическом бурении) становится основной движущей силой самого процесса бурения, выполняя и прочие свои обязанности: охлаждение инструмента, очистку скважины от шлама и т. д.

Турбинный способ бурения экономичен и эффективен по всем показателям. При обычном же бурении для вращения ротора, а вместе с ним и всей колонны бурильных труб требуются значительные затраты энергии, причем затраты эти по мере углубления скважины неуклонно возрастают. Добавим, что с глубиной увеличиваются скручивающие усилия на трубы, повышается их износ и уменьшается жесткость всей системы. Поэтому роторное бурение обычно применяется до сравнительно небольшой глубины.

При турбинном способе ротор неподвижен (!) — вращается только то, что и должно вращаться, а именно буровое долото. А бурильные трубы? Они тоже неподвижны и служат лишь для доставки породоразрушающего инструмента на забой, для передачи на него необходимой нагрузки, и по совместительству выполняют обязанности водопровода. Все просто и надежно.

Почему же не применить турбинный способ на малых глубинах, скажем, сразу при забуривании? Дело в следующем: вода на турбину подается в таком количестве и под таким давлением, что при малой глубине скважины вода будет фонтанировать, и работать на буровой вышке придется под проливным глинистым дождем. На достаточной же глубине фонтанирующая энергия гасится столбом жидкости, которую просто так уже не вытолкнуть на поверхность.

Мы говорим: «вода охлаждает», «вода выносит», «вода вращает», однако чистая вода в качестве промывочной жидкости при нефтяном бурении практически не применяется. Только растворы. Чаще всего глинистые либо глинистые с полимерами. Такие растворы лучше захватывают шлам, а следовательно, быстрее и качественнее очищают забой. Кроме того, глина постепенно оседает на стенках скважины, замазывает поры и трещины в породах, временно (до обсадки трубами) удерживая их от осыпания. Ну и наконец, главная задача глины в промывочном растворе — это повышение его плотности. Зачем?

Скважина отбуривается на нефть, и мы ожидаем (и не просто ожидаем, а очень хотим) встретить залежь. Чем крупнее, тем лучше. Так вот, на глубине, скажем, 3000 м внутрипластовое давление в залежи будет составлять примерно 330 кгс/см2. Компенсировать такое давление можно лишь достаточно плотным раствором, например глинистым с плотностью 1,2 г/см3. Менее плотный раствор давление выбьет из скважины, как пробку из шампанского. Чем выше плотность раствора, тем надежнее закупорка скважины и тем больше есть времени для почетной встречи нефти на поверхности. Именно поэтому с самого начала бурения, и особенно после 1000-метровой глубины, ведется непрерывный и очень тщательный контроль за параметрами промывочной жидкости. Расчеты, анализы, проверки-перепроверки.

И вообще, нефтяное бурение — это весьма напряженный и ответственный труд. Буровики-нефтяники постоянно, ежеминутно работают как бы на огромной пороховой бочке — на нефтяной или газовой залежи.

Некоторые журналисты с восторгом сообщают, что в таком-то месте «забил новый мощный фонтан черного золота!». Фраза красива, но у специалиста она не вызовет радости или удовлетворения, ибо вырвавшийся газонефтяной фонтан — это бедствие, катастрофа, сложнейшая авария, и по разрушительным последствиям такой выброс можно сравнить разве что с извержением малого вулкана. Подобные аварии ликвидируются месяцами, иногда годами, с применением мирных атомных взрывов небольшой мощности или самой современной военной техники, но, к сожалению, не всегда успешно. Поэтому никакие просчеты при нефтяном бурении категорически нe допускаются. Любые упущения здесь чреваты слишком тяжелыми последствиями.

«Кроваво-черное пламя взметнулось в небо. Оно разрасталось, устремлялось ввысь, и там, на высоте 30 м, бурлило плотными клубами едкого дыма. Ревела земля. На расстоянии 50 м жар был невыносимый. Пятеро в серебристых скафандрах, очень похожих на космические, шагнули в огонь. Это был второй день схватки с открытым фонтаном…

Самыми первыми на скважину пошли бойцы военизированного отряда по предупреждению и ликвидации открытых нефтяных и газовых фонтанов Миннефтепрома. Из устья с пронзительным шипением и свистом вырывается газ…

Фонтанщики действуют под защитой водной завесы. Это тоже суровая необходимость: в любую секунду огонь может завладеть устьем…

Замечаю: люди действуют неторопливо, даже как-то слишком спокойно. Такова специфика их работы. Фонтанщикам нельзя торопиться. Всё они должны делать надежно, без суеты, без ошибок. В этом они схожи с саперами.

Операция по глушению открытого фонтана — тяжелый и кропотливый труд в экстремальных условиях. Фонтанщик обязан в совершенстве знать буровую технику и оборудование, иметь в запасе несколько профессий — монтажника, тракториста, газосварщика, такелажника — вплоть до умения оказать первую медицинскую помощь…

А на утро над скважиной все же взметнулся огненный смерч. Теперь надо быстрее освободить устье от оборудования и металлоконструкций. Этим опасным делом и занялись пятеро в серебристых скафандрах.

Наконец, устье свободно. И тут же к гулу фонтана прибавился не менее мощный рев сдвоенной турбореактивной установки. Еще мгновение — и специальная смесь врезалась в огненный столб. Все выше и выше поднимают пламя могучие струи. И там, лишенный „пищи“, огонь, наконец, выдыхается.

И снова в работе фонтанщики. Последний этап — наведение запорного оборудования. Теперь стихия укрощена окончательно. Выброс больше не грозит скважине…» (С. Подгайц. «Схватка с фонтаном»).

К приему нефти всегда готовятся тщательно и, главное, заблаговременно. Как именно? Прежде всего, при достижении 1000-метровой глубины на скважине оборудуется «превентор» — устройство для надежного, глухого и быстрого перекрытия устья в случае неожиданного выброса нефти или газа. Далее, постоянно рассчитываются плотность и состав промывочной жидкости. Промывочный раствор всегда должен соответствовать расчетному и иметь достаточный запас «прочности» на непредвиденные условия и обстоятельства, поскольку именно раствор в первую очередь должен сдерживать напор, пока не будут приняты надежные меры предосторожности.

При достижении проектной глубины, т. е. когда по всем имеющимся данным до залежи остается лишь тонкое перекрытие из вмещающих пород, в скважину опускают последнюю — эксплуатационную — колонну обсадных труб. Все полости между обсадными трубами и стенками скважины, так называемое «затрубное пространство», целиком, от забоя до устья, цементируются. В нефтяных скважинах, пройденных в устойчивых монолитных породах, иногда цементируется только нижняя часть за эксплуатационной колонной. При цементации в скважину закачивается раствор (на его приготовление уходит до 200 тонн цемента), который потом промывочной жидкостью выдавливается в затрубное пространство. После цементации ствола на устье скважины устанавливают фонтанную головку, связывающую между собой все колонны обсадных труб (точнее, их верхние концы). Итак, скважина готова к приему; нефти,

Далее специальными направленными взрывами (патронами с кумулятивными зарядами) простреливают перегородку из вмещающих залежь пород. Затем в скважину опускают насосно-компрессорные трубы и воздухом либо чистой водой начинают постепенно выдавливать тот плотный раствор, который все еще сдерживает рвущуюся на поверхность нефть. Теперь уже в нем нет необходимости, ибо устье скважины надежно закрыто фонтанной головкой с множеством задвижек и отводов и поток нефти в любой момент может быть перекрыт либо направлен в нужную емкость. Теперь скважина уже окончательно подготовлена к эксплуатации.

Таково нефтяное бурение — сложная, трудоемкая, но совершенно необходимая отрасль промышленности. Не удивительно, что морские буровые установки, которые, как мы уже отмечали, являются самыми грандиозными искусственными сооружениями за всю историю человечества, создаются для разведки и добычи именно нефти и газа.

Вращательное колонковое бурение

Если бескерновое нефтяное бурение является наиболее глубинным и фундаментальным, то колонковое, пожалуй, самым распространенным. Все геологические и инженерные исследования, на всех этапах и стадиях — от геологической съемки для составления геологических карт до эксплуатационной разведки — проводятся с применением именно колонкового способа. Керн — основа современной геологии, только с его помощью можно получить самые достоверные сведения о строении земных недр, о составе и характере залегания в них твердых полезных ископаемых; керн используется также для разнообразных анализов и испытаний.

Вот, скажем, первые скважины на Луне. Они пробурены, разумеется, керновым способом. Просто дырки в лунной поверхности совершенно бессмысленны. Нам нужны были образцы, и мы их получили. Точно так же и в сверхглубоких скважинах: здесь важен не рекорд глубины (только ради него нет смысла нести многомиллионные расходы), а прежде всего материал для исследований — керн горных пород!

Впрочем, лунные и сверхглубокие скважины являются как бы крайними звеньями длиннейшего колонкового ряда. Мы же говорим сейчас о самом распространенном бурении — о золотой середине между космосом и сверхглубинами, о том бурении, которым займется большинство из тех, кто захочет стать бурильщиком.

Колонковыми скважинами исследуются обычно верхние, приповерхностные части земной коры — твердая оболочка в диапазоне глубин от нуля до 1,5, реже до 2–3 км, т. е. именно та часть, которая (пока что) обеспечивает нас всеми твердыми полезными ископаемыми. При столь небольших глубинах важна не только скорость самого бурения, но и оперативность при перемещении буровой установки со скважины на скважину, с точки на точку. Поэтому агрегаты для колонкового бурения в сравнении с монументально-громоздкими нефтяными сооружениями отличаются компактностью, мобильностью, простотой.

Все механизмы и приспособления буровой установки, включая двигатель, буровой станок, насос и даже легкую складную вышку, обычно монтируются на тракторных санях либо на раме грузового автомобиля или трактора. Вот, например, самоходная установка УКБ-4СТ (расшифровывается это как «установка колонкового бурения четвертого класса, самоходная на тракторе»). Все снаряжение размещается на транспортной базе трелевочного трактора ТТ-4 (рис. 22). В походном положении установка весьма компактна и в любой момент может выехать на заданную точку, в течение нескольких дней отбурить там 500-метровую скважину; потом «пять минут на сборы», и она уже направляется на новую точку, снова за десятки километров. Легкий десант с весьма существенными результатами. Подобные установки незаменимы при бурении опорных картировочных скважин и профилей, т. е. в тех случаях, когда исследования проводятся единичными скважинами, но на больших площадях.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 22. Самоходная буровая установка типа УКБ-4СТ.

При поисково-разведочном бурении на рудные тела, когда десятки и даже сотни скважин отбуривают в одном месте, на пятачке в несколько квадратных километров, применяют более тяжелые станки. Но и они вместе со всем оборудованием обычно располагаются под единой крышей (в отапливаемом помещении, называемом «буровым зданием» или «тепляком»), на общем основании с полозьями из толстых труб или из широкого швеллера. В пределах участка работ такие установки перетаскиваются тракторами, а на большие расстояния перевозятся автомобилями на специальных подкатных тележках или трейлерах.

Компактность, мобильность, относительная простота — все это, так сказать, внешние атрибуты, взгляд со стороны. А сам принцип колонкового бурения? По сути своей он ничем не отличается от роторного бурения нефтяных скважин. Те же три главные составляющие единого процесса: вращение, нагрузка на инструмент, промывка, а если говорить точнее, то вращение под нагрузкой с промывкой.

Основное отличие колонкового бурения от бескернового заключается не в конструктивных особенностях станка, не в размерах его и не в способе передачи нагрузки, а прежде всего в специфике бурового снаряда и его породоразрушающего инструмента (наконечника). Собственно, при роторном нефтяном бурении в любой момент можно заменить шарошечное долото на колонковую трубу с кольцевой коронкой и пройти тот или иной интервал с керном. Никаких переоборудований в двигателе, станке, бурильной колонне для этого не требуется. И наоборот, при поисково-разведочном бурении зачастую (при забуривании; при некоторых осложнениях; в тех случаях, когда геологический разрез в районе скважин достаточно хорошо изучен) на конец бурильной колонны ставится шарошка и определенный интервал глубины для скорости проходится «сплошным забоем» — без керна.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

2 — колонковая труба;

3 —керн; 4— буровая коронка.

В качестве дополнительных приспособлений применяют специальные кернорвательные кольца — для отрыва столбика керна от монолита и для удержания его в колонковой трубе во время подъема на поверхность, а также расширители, которые обрабатывают и калибруют стенки скважины и не допускают уменьшения ее диаметра по мере изнашивания коронки. Однако эти приспособления существенно не усложняют конструкцию.

Идет процесс бурения… Но вот пробурен определенный интервал, и по сигналу мастера бригада приступает к подъему бурового снаряда из скважины. Труба за трубой извлекается на поверхность лебедкой или гидравлическим подъемником бурового станка. Бурильную колонну разбирают на составные части — свечи, которые аккуратно устанавливают в буровой. Наконец, поднимают колонковую трубу, в которой и заключена драгоценная колонка горной породы, ради которой и был затрачен весь этот труд. Этой колонке керна горной породы, поднятой с неведомых ранее глубин и впервые увиденной именно буровиками, и надлежит раскрыть секреты недр Земли.

Керн будет изучен геологами-петрографами, минералогами, геохимиками. В опытных руках исследователей ему предстоит дать ответ: можно ли ожидать полезные ископаемые, сколько еще бурить до них, каковы перспективы дальнейшей разведки. А геологу-буровику керн подскажет, какой инструмент для бурения лучше применить, какие принять меры, чтобы обеспечить 100 %-ное получение выбуренной породи. Поэтому так осторожно обращаются геологи с этим керном, так тщательно укладывают его в специальные ящики, гак бережно содержат в кернохранилищах.

В большинстве буровых станков вращатель (в колонковом бурении он обычно называется «шпинделем») можно наклонить вправо или влево па угол до 30° и зафиксировать в таком положении, т. е. можно осуществлять бурение под строго заданным углом наклона. Надо сказать, что в разведочной геологии, в отличие от нефтяной, чаще отбуривают именно наклонные скважины. Такие скважины имеют кратчайший путь до рудного тела и пересекают его под прямым углом, как говорят геологи, — «вкрест падения». В результате наиболее эффективно решаются стоящие перед бурением задачи.

По способу истирания пород и соответственно по типу бурового породоразрушающего инструмента современное колонковое бурение бывает трех видов: дробовое, твердосплавное и алмазное. Правда, бурение дробью к настоящему времени практически отошло в прошлое.

На смену дроби пришли скачала твердые сплавы, а потом алмазы и сверхтвердые материала. Эти истирающие вещества совершили переворот в технологии колонкового бурения, вывели его на уровень, соответствующий современным требованиям, предъявляемым к механизмам и оборудованию. Прежде всего диаметры скважин, а вместе с ними диаметры труб и прочего вспомогательного оборудования уменьшились вдвое и втрое. Сейчас большинство керновых скважин отбуривают коронками диаметрами 46, 59 и 76 мм. Поскольку уменьшились диаметры скважин, то сократились и площади пород, подлежащих истиранию, и существенно возросли скорости бурения.

А результаты? При алмазном бурении выход керна (независимо от диаметра скважины) повысился до 80—100 %. Здесь ведь нет грубого разрушения пород, здесь осуществляется только направленное пропиливание. Керн из скважин, пройденных алмазными коронками, приятно взять в руки. Это тонкие монолитные цилиндры с пришлифованной боковой поверхностью — готовые музейные образцы, не очень-то нуждающиеся в дополнительной обработке.

Малые диаметры скважин, высокие скорости бурения, экономичность и образцово-показательный керн — все это прекрасно. Но ведь алмазы! Драгоценные камни, ценящиеся либо на вес золота, либо даже дороже. Оправдана ли подобная роскошь?. А как насчет соотношения цели и средств? Вопросы правомерны. Но надо иметь в виду, что в бурении применяются не ювелирные, а технические алмазы — мелкие, непрозрачные, неограненные, а в последние годы — не только природные, но и искусственные, синтетические. Цены на такие камни, хотя и высокие, но вполне доступные для массового их применения, в частности для бурения.

При современном колонковом бурении в равной мере применяют как твердые сплавы, так и алмазы. Достаточный запас коронок того и другого типа всегда есть на буровой. Твердосплавными коронками проходятся наносы при забуривании скважин, а также участки с трещиноватыми породами; алмазные коронки наиболее эффективны в плотных монолитах, в массивах изверженных и метаморфических окварцованных пород.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 24. Твердосплавная коронка.

1 — корпус; 2 — твердосплавные резцы.

Алмазы в бурении по своим свойствам — стойкости, выносливости, отдаче — не имеют конкурентов. И естественно, что как и все уникальные создания, они капризны и своенравны. Они требуют особого отношения к себе: заботы, внимания, терпения и даже любви. Иначе работать не будут. Не заставишь.

Во-первых, алмазы очень болезненно реагируют на присутствие посторонних предметов в скважине, особенно металлических. Любая крошка металла на забое, будь то кусочек изношенной трубы, случайно уроненный болтик или обломок твердого сплава, мгновенно выводит из строя даже новую коронку. Поэтому перед спуском алмазной коронки скважину приходится очень тщательно промывать сильной струей жидкости. Алмазы требуют совершенно чистого забоя — только горная порода и ничего более.

чем разрушают горную породу. Смотреть фото чем разрушают горную породу. Смотреть картинку чем разрушают горную породу. Картинка про чем разрушают горную породу. Фото чем разрушают горную породу

Рис. 25. Конструкция алмазной коронки.

/ — корпус; 2 — матрица; 3 — алмазы-резцы.

Аналогична их реакция на резкие удары и на сильную вибрацию. При неритмичной работе бурового инструмента (а такое случается при проходке трещиноватых пород либо при наличии в породах каверн и полостей) алмазы быстро крошатся и выпадают из коронки. Для борьбы с вибрацией приходится применять либо сложные приспособления (различные центраторы, амортизаторы, утяжеленные бурильные трубы), либо антивибрационные смазки, которыми покрываются поверхности бурильных труб и всех сочленений, либо специальные эмульсии.

В СССР история развития алмазного бурения,[6] основанного на широком применении отечественных якутских алмазов, исчисляется неполными тремя десятилетиями. Научно-исследовательские работы по этой проблеме, начатые практически с нуля, ведутся также на протяжении очень короткого времени по сравнению с историей алмазного бурения в западных странах. И тем не менее наша наука об алмазном бурении и техника для его осуществления находятся па современном мировом техническом уровне.

Основная сложность при работе с алмазами состоит в том, что для каждой разновидности пород необходимо очень тщательно подбирать соответствующую ей марку коронки. Почему? Для начала давайте посмотрим, что представляет собой керновая алмазная коронка (рис. 25). Короткий тонкостенный цилиндр-корпус в верхней части имеет ленточную резьбу для соединения с расширителем либо непосредственно с колонковой трубой; в нижней торцевой части находится матрица — кольцевой металло-керамический сплав, включающий в себя мелкие технические алмазы. В матрице делаются прорези-каналы для выхода промывочной жидкости.

Диаметры таких коронок меняются от 26 до 112 мм (всего выпускаются коронки семи стандартных размеров). Коронки малых размеров применяют для лабораторных исследований и при поисковом бурении, средние — при разведке месторождений на глубинах до 1000–3000 м, большие — при проходке скважин на уголь и при различных инженерных исследованиях.

По крупности алмазов, а также по способу размещения их в матрице алмазные коронки бывают двух типов: однослойные с поверхностной вставкой алмазов в матрице и импрегнированные, в которых очень мелкие зерна алмазов равномерно рассеяны по всей массе матрицы. Во всех случаях по мере углубки скважины матрица постепенно снашивается, все более обнажая алмазы.

Крупность и масса алмазов измеряются в каратах. Название произошло через итальянское carato от греческого названия стручков рожкового дерева keration. Масса сухих косточек плода этого растения, удивительно идентичных друг другу, служила в древности единицей массы сначала для жемчуга, а затем и для других драгоценных камней. Международной единицей карат стал в 1913 г., после того как Международный комитет мер и весов в Париже предложил принять метрический карат, равный 200 мг (или 0,2 г), в качестве официальной единицы измерения.

Масса алмазов, встречающихся в природе, изменяется от тысячных долей карата до нескольких сотен и тысяч карат. Самый крупный найденный на Земле алмаз, названный «Куллинан», весил 3106 карат. Чаще же всего попадаются мелкие кристаллы и их обломки массой от 0,05 до 0,4 карата.

Читайте также

Древесные породы

Древесные породы Разнообразие пород деревьев огромно, и каждая из них имеет свою неповторимую специфику, которую необходимо знать и обязательно учитывать при работе с древесиной.Поэтому прежде, чем начать рассказ о приемах работы с древесиной, стоит дать характеристику

Хвойные породы

Хвойные породы Хвойные породы обладают резким смолянистым запахом из-за смоляных ходов в древесине. Но есть исключения: у ели и тиса нет смоляных ходов.Что касается текстуры древесины хвойных пород, то она сильноволокнистая, что одновременно является и ее недостатком, и

Лиственные породы

Лиственные породы Лиственные породы древесины делятся на твердолиственные и мягколиственные. Древесина таких пород практически не пахнет, запах усиливается только при свежем срезе древесины и ее обработке. Древесина лиственных пород не имеет смоляных ходов. Вместо них

Импортные породы деревьев

Импортные породы деревьев Выше были рассмотрены породы деревьев, которые произрастают у нас. Но в России большой популярностью пользуются и импортные породы, которые чаще всего идут на изготовление мебели и украшений.Красное деревоКрасное дерево произрастает только в

ЛЕКЦИЯ № 3. Древесные породы

ЛЕКЦИЯ № 3. Древесные породы 1. Определитель древесных пород На основании «Справочника по древесине» А. М. Боровикова и Б. Н. Уголева составлен определитель пород.1. Группы древесных пород:1) годичные слои хорошо заметны на всех разрезах древесины. Сердцевинные лучи не

2. Основные хвойные породы

2. Основные хвойные породы К хвойным породам относятся ель, сосна, лиственница, пихта, кедр, тис, а также можжевельник, но он растет в виде кустарников.Ель – безъядровая порода, древесина ее белая со слабым желтоватым или розовым оттенком. Имеет смоляные ходы, но

3. Основные лиственные породы

3. Основные лиственные породы Береза имеет большее распространение в лесах России по сравнению с другими видами. Береза – рассеяно—сосудистая безъядровая порода древесины с желтоватым оттенком. Годичные слои видны плохо. Сердцевинные лучи видны лишь на строго

4. Породы ограниченного применения

4. Породы ограниченного применения С давних пор в степной зоне России, в сельской местности для изготовления простой мебели (стулья, табуреты, детские кроватки), а также различных поделок (скалки, толкушки, пахталки и т. д.) использовались такие древесные породы, как вишня,

5. Экзотические породы

5. Экзотические породы Древесные породы, произрастающие в странах тропического или субтропического климата, относятся к экзотическим породам ограниченного применения. Еще в XVIII в. начали завозить в Россию, в Петербург заготовки этих пород для изготовления мебели,

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *