чем ранее были экспертные системы
Экспертные системы
Рубрика | Программирование, компьютеры и кибернетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 28.01.2012 |
Размер файла | 23,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Федеральное агентство по образованию
Волгоградский государственный технический университет
факультет подготовки инженерных кадров
кафедра «Системы автоматизированного проектирования и поискового конструирования «
по курсу «Экспертные системы»
доценткаф. САПР и ПК
Волгоград 2012 г.
1. История появления первой ЭС DENDRAL
2. Первая экспертная система
4. Основатели системы DENDRAL
5. Аналогичные системы
Список использованной литературы
На начальных этапах развития искусственный интеллект подвергался жесткой критике, и одним из доводов был тот, что практической пользы от него нет, он занимается игрушками. Экспертные системы одними из первых доказали практическую пользу этого научного направления, принося в начале 80-х годов ХХ века коммерческую прибыль своим создателям.
Термин «системы, основанные на знаниях» (knowledge-basedsystems) появился в 1976 году одновременно с первыми системами, аккумулирующими опыт и знанияэкспертов.
Эксперт предоставляет необходимые знания о тщательно отобранных примерах проблем и путей их решения. Например, при создании экспертной системы диагностики заболеваний врач рассказывает инженеру по знаниям об известных ему заболеваниях. Далее эксперт раскрывает список симптомов, которые сопровождают каждое заболевание и в заключение рассказывает об известных ему методах лечения. Инженер по знаниям, формализует всю полученную информацию в виде базы знаний и помогает программисту в написании экспертной системы.
1. История появления первой ЭС DENDRAL
Все началось в далеких шестидесятых, которые принесли миру бит- и рок-музыку, различные молодежные движения вроде хиппи и пропаганду свободы нравов. В то время в космос отправился первый человек, медицина ознаменовалась успехами в клинической трансплантации органов (первая успешная пересадка сердца), были заложены основы современных операционных систем.
Тогда Эдвард Фейгенбаум (EdwardFeigenbaum), исследователь в области искусственного интеллекта, как и многие ученые его времени, задумывался над тем, может ли машина думать и рассуждать подобно человеку и как много знаний в нее возможно вложить. Он считал, что ответ удастся получить, только сконструировав такую «мыслящую» систему. Но какое же научное направление выбрать для экспериментов? В какой предметной области разработки Фейгенбаума принесли бы большую пользу? Разрешить эти вопросы помог лауреат нобелевской премии, биохимик Джошуа Ледерберг (Joshua Lederberg). Он предложил создать компьютерного помощника, который мог бы определять путем расчета молекулярную структуру химических соединений и который, по словам Ледерберга, был просто необходим в органической химии. Так появилась идея о построении экспертной системы DENDRAL.
2. Первая экспертная система
Первую экспертную систему, которую назвали Dendral, разработали Э.А. Фейгенбаум и Дж. Ледерберг в Стэнфордском университете в конце 1960-х г.г. Эта была экспертная система, определяющая строение органических молекул по химическим формулам и спектрографическим данным о химических связях в молекулах. Ценность Dendral заключалась в следующем. Органические молекулы, как правило, очень велики и поэтому число возможных структур этих молекул также велико. Благодаря эвристическим знаниям экспертов-химиков, заложенных в экспертную систему, правильное решение из миллиона возможных находилось всего за несколько попыток. Принципы и идеи, заложенные в Dendral оказались настолько эффективными, что они до сих пор применяются в химических и фармацевтических лабораториях по всему миру.
Экспертная система Mycin, разработанная в том же Стэнфорде в середине 1970-х г.г., одной из первых обратилась к проблеме принятия решений на основе ненадежной или недостаточной информации. Все рассуждения экспертной системы Mycin были основаны на принципах управляющей логики, соответствующих специфике предметной области. Многие методики разработки экспертных систем, использующиеся сегодня, были впервые разработаны в рамках проекта Mycin.
На сегодняшний день создано уже большое количество экспертных систем. С помощью них решается широкий круг задач, но исключительно в узкоспециализированных предметных областях. Как правило, эти области хорошо изучены и располагают более менее четкими стратегиями принятия решений. Сейчас развитие экспертных систем несколько приостановилось, и этому есть ряд причин:
Передача экспертным системам «глубоких» знаний о предметной области является большой проблемой. Как правило, это является следствием сложности формализации эвристических знаний экспертов.
Экспертные системы неспособны предоставить осмысленные объяснения своих рассуждений, как это делает человек. Как правило, экспертные системы всего лишь описывают последовательность шагов, предпринятых в процессе поиска решения.
Экспертные системы обладают еще одним большим недостатком: они неспособны к самообучению. Для того, чтобы поддерживать экспертные системы в актуальном состоянии необходимо постоянное вмешательство в базу знаний инженеров по знаниям. Экспертные системы, лишенные поддержки со стороны разработчиков, быстро теряют свою востребованность. dendral экспертный система фейгенбаум
В DENDRAL использовались методы порождения и проверки. Исходные данные вводились в систему с масс-спектрометра, который бомбардировал опытный образец потоком электронов. При этом структура образца претерпевала изменения, перемещение атомов в структуре образца оценивалось системой как отсоединение узла одного подграфа и присоединение его к другому. Проблема состояла в том, что для молекулы может быть достаточное множество вариантов разделения на фрагменты, так как при бомбардировке образца могут разрываться разные связи в молекуле и перемещаться разные ее фрагменты. В этой связи имеет смысл говорить только о вероятности разрыва определенной связи, но нельзя предугадать как именно разделиться молекула на фрагменты.
В рамках проекта DENDRAL была разработана программа CONGEN, которая формировала описание полной химической структуры, манипулируя символами, представляющими атомы и молекулы. В качестве входной информации эта программа получала формулу молекулы и набор ограничений, накладываемых на возможные взаимные связи между атомами. Система использует специальный алгоритм, разработанный Ледербергом, для систематического перечисления всех возможных молекулярных структур, а затем применяет знания по химии для сокращения этого списка до обозримого размера. Знания в DENDRAL представлены в виде процедур для генератора молекулярных структур и в виде правил для управляемой данными и оценивающей частей программы. Система реализована на языке INTERLISP.
Результатом выполнения программы является список всех возможных комбинаций атомов в структуре молекулы с учетом заданных ограничений.
В состав DENDRAL входят также программы, которые помогают пользователю отбрасывать одни гипотезы и ранжировать другие, используя знания о связях показаний масс-спектрометра со структурой молекул соединения. Например, программа MSPRUNE отсеивает те гипотезы-кандидаты, которые предполагают варианты фрагментации, не совпадающие с полученными от масс-спектрометра данными.
Программа MSRANK ранжирует оставшиеся гипотезы-кандидаты в соответствии с тем, какая часть пиков масс-спектрограммы, предсказанных этой гипотезой, была действительно обнаружена в полученных экспериментально данных. Таким образом, в экспертной системе DENDRAL фактически реализована стратегия «формирование гипотез и их последующая проверка». Исходные данные служат для формирования некоторого пространства гипотез, которые предсказывают наличие и отсутствие определенных свойств масс-спектрограммы, а затем эти гипотезы сопоставляются с результатами экспериментов.
Фейгенбаум, Эдвард Альберт
В 1994 году Фейгенбаум был награжден премией Тьюринга вместе с Раджем Редди «За первопроходческие разработки и создание крупномасштабных систем искусственного интеллекта и демонстрацию практической важности и потенциальной коммерческой выгоды от технологий использующих искусственный интеллект». В 2007 году был призван членом Ассоциации вычислительной техники.
Основатель лаборатории по исследованию экспертных систем при Стэнфордском университете.
Закончил Колумбийский университет (1944), продолжал обучение в Йельском университете, защитив степень доктора философии (1947). В 1947—58 работал в Висконсинском университете; с 1959 профессор Медицинской школы и руководитель Лаборатории молекулярной медицины Стэнфордского университета в Пало-Альто и одновременно (с 1962) Калифорнийского университета в Беркли.
5. Аналогичные системы
Сейчас количество экспертных систем исчисляется тысячами и десятками тысяч. В развитых зарубежных странах сотни фирм занимаются их разработкой и внедрением в различные сферы жизни. Имеются и удачные попытки построения ЭС в СНГ. В настоящее время ведутся разработки самостоятельно обучаемых экспертных систем. Кроме того, в искусственном интеллекте обозначилось такое направление, как инженерия знаний, отвечающая за поиски передовых методов в сборе, представлении, хранении и преумножении информации. Еще можно упомянуть то, что пятое поколение ЭВМ (наши ПК относятся к четвертому), возникшее в 90-х годах, базируется полностью на экспертных системах.
Сравнивая положение вещей в создании ЭС в 70-х и 90-х годах, просто поражаешься, насколько далеко наука шагнула вперед. Экспертные системы сейчас являются прогрессирующим направлением в искусственном интеллекте, которое вряд ли в ближайшее время уменьшит скорость своего развития. Поэтому к теме подобных «умных» программных комплексов мы вернемся еще не раз.
В современном обществе неструктурированные и слабоструктурированные задачи управления и контроля сложных производственных процессов и объектов часто встречаются в таких областях, как авиация, энергетика, машиностроение, медицина, микроэлектроника и др. Поэтому появление экспертных систем, позволяющих быстро и эффективно решать подобные проблемы, считается большим научным достижением.
Представления знаний в интеллектуальных системах, экспертные системы
Введение
Экспертная система (далее по тексту — ЭС) — это информационная система, назначение которой частично или полностью заменить эксперта в той или иной предметной области. Подобные интеллектуальные системы эффективно применяются в таких областях, как логистика, управление воздушными полетами, управление театром военных действий. Основною направленной деятельностью предсказание, прогнозирование в рамках определенного аспекта в предметной области.
Экскурс в историю экспертных систем
История экспертных систем берет свое начало в 1965 году. Брюс Бучанан и Эдвард Фейгенбаум начали работу над созданием информационной системы для определения структуры химических соединений.
Результатом работы была система под названием Dendral. В основе системы формировалась последовательность правил подобных к «IF – THEN». Информационная система не перестала развиваться и получила множество наследников, таких как ONCOIN – информационная система для диагностики раковых заболеваний, MYCIN – информационная система для диагностики легочных инфекционных заболеваний.
Следующим этапом стали 70-е годы. Период не выделялся особыми разработками. Было создано множество разных прототипов системы Dendral. Примером служит система PROSPECTOR, областью деятельности которой являлась геологические ископаемые и их разведка.
В 80-ых годах появляются профессия – инженер по знаниям. Экспертные системы набирают популярность и выходят на новый этап эволюции интеллектуальных систем. Появились новые медицинские системы INTERNIS, CASNE.
С 90-ых годов развитие интеллектуальных систем приобретает новые и новые методы и особенности. Нововведением становится парадигма проектирования эффективных и перспективных систем. Гибкость, четкость решения поставленных задач дало новое название – мультиагентных систем. Агент – фоновый процесс который действует в целях пользователя. Каждый агент имеет свою цель, «разум» и отвечает за свою область деятельности. Все агенты в совокупности образуют некий интеллект. Агенты вступают в конкуренцию, настраивают отношения, кооперируются, все как у людей.
В 21 век, интеллектуальной системой уже не удивишь никого. Множество фирм внедряет экспертные системы в области своей деятельности.
Быстродействующая система OMEGAMON разрабатывается c 2004 года с IBM, цель которой отслеживание состояния корпоративной информационной сети. Служит для моментального принятия решений в критических или неблагоприятных ситуациях.
G2 – экспертная система от фирмы Gensym, направленная на работу с динамическими объектами. Особенность этой системы состоит в том, что в нее внедрили распараллеливание процессов мышления, что делает ее быстрее и эффективней.
Структура экспертной системы
1. База знаний
Знания — это правила, законы, закономерности получены в результате профессиональной деятельности в пределах предметной области.
База знаний — база данных содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области. Другими словами, это набор таких закономерностей, которые устанавливают связи между вводимой и выводимой информацией.
2. Данные
Данные — это совокупность фактов и идей представленных в формализованном виде.
Собственно на данных основываются закономерности для предсказания, прогнозирования. Продвинутые интеллектуальные системы способные учиться на основе этих данных, добавляя новые знания в базу знаний.
3. Модель представления данных
Самая интересная часть экспертной системы.
Модель представления знаний (далее по тексту — МПЗ) — это способ задания знаний для хранения, удобного доступа и взаимодействия с ними, который подходит под задачу интеллектуальной системы.
4. Механизм логического вывода данных(Подсистема вывода)
Механизм логического вывода(далее по тексту — МЛВ) данных выполняет анализ и проделывает работу по получению новых знаний исходя из сопоставления исходных данных из базы данных и правил из базы знаний. Механизм логического вывода в структуре интеллектуальной системы занимает наиболее важное место.
Механизм логического вывода данных концептуально можно представить в виде :
А — функция выбора из базы знаний и из базы данных закономерностей и фактов соответственно
B — функция проверки правил, результатом которой определяется множество фактов из базы данных к которым применимы правила
С — функция, которая определяет порядок применения правил, если в результате правила указаны одинаковые факты
D — функция, которая применяет действие.
Какие существуют модели представления знаний?
Распространены четыре основных МПЗ:
Продукционная МПЗ
Пример
Диагноз | Температура | Давление | Кашель |
---|---|---|---|
Грипп | 39 | 100-120 | Есть |
Бронхит | 40 | 110-130 | Есть |
Аллергия | 38 | 120-130 | Нет |
Пример продукции:
IF Температура = 39 AND Кашель = Есть AND Давление = 110-130 THEN Бронхит
Продукционная модель представления знаний нашла широкое применение в АСУТП
Среды разработки продукционных систем(CLIPS)
CLIPS (C Language Integrated Production System) — среда разработки продукционной модели разработана NASA в 1984 году. Среда реализована на языке С, именно потому является быстрой и эффективной.
Пример:
Подобное правило будет активировано только тогда, когда в базе данных появится факт симптома с подобными параметрами.
Семантическая сеть МПЗ
В основе продукционной модели лежит ориентированный граф. Вершины графа — понятия, дуги — отношения между понятиями.
Особенностью является наличие трех типов отношений:
По количеству типов отношений выделяют однородные и неоднородные семантические сети. Однородные имею один тип отношения между всеми понятиями, следовательно, не однородные имею множество типов отношений.
Все типы отношений:
Пример
Недостатком МПЗ является сложность в извлечении знаний, особенно при большой сети, нужно обходить граф.
Фреймовая МПЗ
Предложил Марвин Мински в 1970 году. В основе фреймовой модели МПЗ лежит фрейм. Фрейм — это образ, рамка, шаблон, которая описывает объект предметной области, с помощью слотов. Слот — это атрибут объекта. Слот имеет имя, значение, тип хранимых данных, демон. Демон — процедура автоматически выполняющаяся при определенных условиях. Имя фрейма должно быть уникальным в пределах одной фреймовой модели. Имя слота должно быть уникальным в пределах одного фрейма.
Слот может хранить другой фрейм, тогда фреймовая модель вырождается в сеть фреймов.
Пример
Пример вырождающейся в сеть фреймов
На своей практике, мне доводилось встречать системы на основе фреймовой МПЗ. В университете в Финляндии была установлена система для управления электроэнергией во всем здании.
Языки разработки фреймовых моделей (Frame Representation Language)
FRL (Frame Representation Language) — технология создана для проектирования интеллектуальных систем на основе фреймовой модели представления знаний. В основном применяется для проектирования вырождающихся в сеть фреймовой модели.
Запись фрейма на языке FRL будет иметь вид:
Существуют и другие среды: KRL (Knowledge Representation Language), фреймовая оболочка Kappa, PILOT/2.
Формально логическая МПЗ
В основе формально логической МПЗ лежит предикат первого порядка. Подразумевается, что существует конечное, не пустое множество объектов предметной области. На этом множестве с помощью функций интерпретаторов установлены связи между объектами. В свою очередь на основе этих связей строятся все закономерности и правила предметной области. Важное замечание: если представление предметной области не правильное, то есть связи между объектами настроены не верно или не в полной мере, то правильная работоспособность системы будет под угрозой.
Пример
A1 = A2 = A3 = ; IF A1 AND A2 THEN
Банальней примера и не придумаешь.
Важно: Стоит заметить, что формально логическая МПЗ схожа с продукционной. Частично это так, но они имеют огромную разницу. Разница состоит в том, что в продукционной МПЗ не определены никакие связи между хранимыми объектами предметной области.
Важно
Любая экспертная система должна иметь вывод данных и последовательность «мышления» системы. Это нужно для того чтобы увидеть дефекты в проектировании системы. Хорошая интеллектуальная система должна иметь право ввода данных, которое реализуется через интеллектуальный редактор, право редактора на перекрестное «мышление» представлений при проектировании системы и полноту баз знаний(реализуется при проектировки закономерностей предметной области между инженером по знаниям и экспертом).
Заключение
Экспертные системы действительно имеют широкое применение в нашей жизни. Они позволяют экономить время реальных экспертов в определенной предметной области. Модели представления знаний это неотъемлемая часть интеллектуальных систем любого уровня. Поэтому, я считаю, что каждый уважающий себя IT-специалист, должен иметь даже поверхностные знания в этих областях.
Реферат: Экспертные системы 10
Название: Экспертные системы 10 Раздел: Рефераты по коммуникации и связи Тип: реферат Добавлен 14:12:08 06 июля 2011 Похожие работы Просмотров: 2105 Комментариев: 20 Оценило: 4 человек Средний балл: 4.8 Оценка: неизвестно Скачать |