чем проверить индуктивность катушки
Простейшие способы проверки исправности электрорадиоэлементов
Проверка проволочных и непроволочных резисторов
Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее: произвести внешний осмотр; проверить работу движущего механизма переменного резистора и состояние его частей; по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности; омметром измерить действительную величину сопротивления и определить отклонение от номинала; у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка. Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.
Проверка конденсаторов всех типов
К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин; изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции. Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.
Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.
Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.
Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.
Проверка катушек индуктивности
Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.
Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки. Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.
Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.
Проверка силовых трансформаторов, трансформаторов и дросселей низкой частоты
По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.
Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.
Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.
1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
2. Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
3. Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
4. Измерение индуктивности обмотки.
5. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.
Простейшая проверка исправности полупроводниковых диодов
Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rnp и обратного Rо6p сопротивлений. Чем больше соотношение Rо6p/Rnp, тем выше качество диода. Для измерения диод подключается к тестеру (омметру) или к ампервольтомметру. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.
Простая проверка транзисторов
При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых триодов (транзисторов) без выпайки их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором и при соединении базы с эмиттером. При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч ом.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Тема: Катушки индуктивности.
Опции темы
Подскажите, пожалуйста, чем измерять индуктивность катушек?
Мне надо заводские катушки отмотать до определённой меньшей индуктивности. Не знаю как узнать сколько отматывать.
Купите себе мультиметр в котором есть функция измерения индуктивности и нет проблем,такие есть и их много разных.
Меня не устраивает цена таких мультиметров
Ну значит будете мучаться пока не купите,индуктивность на пальцах не измеряется.И нетакой он и дорогой,а в дольнешом пригадится ещё не раз.Мультиметр же нетолько индуктивность измеряет но и многое другое.
Как выше сказано, что если известна индуктивность катушки, то подогнать под нужную особых проблем нет. Но только на катушках без сердечника.
Нужно просто знать сколько витков имеет катушка и затем либо отматывать, либо доматывать её уменьшая или увеличивая индуктивность катушки.
К примеру катушка имеет на борту индуктивность в 1,0 мГ и 100 витков провода. требуемая индуктивность 0,5 мГ. 1,0мГ/0,5мГ=2. Индуктивность нужно уменьшить в два раза, а количество витков в корень квадратный из 2. 100/1,41=71 виток. Точно так же в сторону увеличения индуктивности. к примеру требуется индуктивность 1,8мГ. 1,8мГ/1,0мГ=1,8 индуктивность увеличить в 1,8 раза. Корень из 1,8=1,34. 100*1,34=134 витка. Если правильно и аккуратно домотать или намотать снова катушку, то гарантированно попадаешь в нужную индуктивность с достаточной точностью. Проверено на практике и подтверждено «измерителем иммитанса Е7-15».
Как будут обстоять дела в этом плане с катушкой на железе или феррите, сказать не могу. Не проверял.
Как измерить индуктивность мультиметром
При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.
Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.
Аналоговый мультиметр
Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло.
Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.
Цифровой мультиметр
В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.
Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.
Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.
Измеритель индуктивности для мультиметра
Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.
Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.
Сборка платы приставки
Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.
В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.
Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.
Подойдет большинство высокочастотных транзисторов, с параметрами h21Э для одного не меньше 150, а для другого более 50.
Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.
Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%.
Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.
Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к мультиметру (частотомеру).
Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.
При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).
Корпус приставки к мультиметру
Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.
Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.
Настройка измерителя индуктивности
Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).
Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.
По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.
Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.
Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.
Проведение замеров индуктивности
После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:
При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.
Как выбрать RLC измеритель
На практике часто нужно определить тип или параметры резисторов, конденсаторов, катушек индуктивности. Радиодетали несовершенны, как всё в нашем мире, зачастую из-за отсутствия или повреждения маркировки, износа или старения радиокомпонентов, определение номинала становится сложной задачей.
Чтобы определить сопротивление, емкость или индуктивность применяют измерители RLC, ESR. В статье разберем на примерах как провести замеры и подскажем, как выбрать оптимальное техническое решение для ваших прикладных задач.
Время чтения: 20 минут |
Что такое измеритель импеданса и тестер полупроводников
Так уж сложилось, что чаще всего радиолюбители пользуются тремя основными приборами — вольтметром, амперметром, омметром, но иногда возникают ситуации, когда для работы необходим более сложный, редкий прибор — измеритель RLC иммитанса или LCR-метр.
При этом конечно подобные измерительные устройства также бывают как профессиональные, так и «любительские», но для начала о том, что это вообще такое.
Как уже следует из названия, прибор позволяет измерять три основных величины:
- L — Индуктивность;
- C — Ёмкость;
- R — Сопротивление;
Конечно емкость и сопротивление могут замерять большинство современных мультиметров, но LCR-метры это делают обычно точнее, в большем диапазоне. Также RLC метры позволяют проводить дополнительные измерения, например добротности, коэффициента потерь, ESR (эквивалентного последовательного сопротивления, сокращенно ЭПС) и делать это на разных частотах.
Подобный функционал необходим там, где уже не хватает обычных мультиметров, например при диагностике неисправностей импульсных блоков питания, преобразователей напряжения, радиочастотных цепей.
Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей
Резисторы – самый распространенный вид радиокомпонентов
Проволочные резисторы отличающиеся по номинальной мощности
Если с распространенными номиналами проблем не возникает, то измерение низкоомных резисторов может добавить сложностей. Обычный мультиметр часто может измерить нормально сопротивление порядка 1-2 Ома и выше, если ниже, то начинает сильно влиять сопротивление проводов, щупов и низкое разрешение. Даже довольно точный UNI-T UT61E имеет дискретность измерения в таком режиме всего 10 мОм, при том что даже у недорого LCR-метра минимальная дискрета 0,1 мОм. высокой точности с возможностью подключения к ПК для снятия логов Соответственно если при помощи мультиметра можно относительно точно измерить резисторы с сопротивлением от 0,05-0,1 Ома, то при измерении 10 мОм он фактически ничего уже измерять не будет, для сравнения ниже измерение двух резисторов номиналом 1 и 2,2 мОм. Часто измерение малых сопротивлений необходимо при проверке, подборе или изготовлении токоизмерительных шунтов. Альтернативный вариант измерения по падению напряжения, но необходим регулируемый блок питания, амперметр, вольтметр. Возможность измерения малых сопротивлений также полезна для выявления таких проблем как неправильная маркировка, особенно низкоомных резисторов. Слева резистор промаркированный как 0,1 Ома, справа как 0,22 Ома, но реально у них почти одно и то же сопротивление. Такие ошибки могут стоить иногда очень дорого. ТранзисторыИзмерение малых сопротивлений поможет в оценке оригинальности полевых транзисторов. Сейчас на рынок все чаще поступают поддельные, перемаркированные транзисторы. Хотя простое измерение сопротивления в открытом состоянии не дает полной информации, оно позволяет быстро понять что перед вами. Для теста кроме измерителя надо иметь только батарейку на 9 вольт. Зачастую данные в даташитах приводятся к напряжению на затворе в 10 вольт, но в данном случае это не существенно. Кроме того корректно измерять сопротивление сток-исток под током, обычно он указан в документации, но это требует наличия как минимум лабораторного блока питания. Чтобы проверить транзистор: подключаем тестовые щупы к выводам сток и исток (обычно средний и правый), подаем 9 вольт на крайние выводы. Постоянно подавать напряжение не требуется, достаточно зарядить затворную емкость, но надо быть внимательным, не подключите случайно батарейку к щупам тестера. Можно даже сначала «зарядить» транзистор, а только потом подключить щупы. КонденсаторыКонденсаторы используются немного реже, но имеют свои особенности. Например в отличие от резисторов они гораздо больше подвержены старению, особенно если речь идет об электролитических конденсаторах установленных в импульсных блоках питания, преобразователях материнских плат, т.п. Особое значение имеет ESR конденсаторов. Когда конденсатор высыхает почти не теряя при этом емкость, у него значительно увеличивается внутреннее сопротивление. Обычным мультиметром такое не диагностируется, можно менять всё подряд, но это не всегда удобно, часто сложно или дорого. Кроме того часто RLC измерители позволяет проводить измерения без выпаивания компонента, хотя, конечно это зависит от схемы включения. Для примера сравнение двух конденсаторов, дешевого китайского и фирменного. Хоть точный, но обычный мультиметр считает их почти одинаковыми, показывая только небольшую разницу в емкости. Но если подключить конденсаторы к LCR-метру, то видно что отличие во внутреннем сопротивлении у них почти в 5 раз! Если планируете применять конденсаторы в импульсных блоках питания, то именно эта разница в сопротивлении скажется на нагреве, а соответственно и на сроке службы, характеристиках блока питания. Конденсаторы с большим внутренним сопротивлением не могут эффективно гасить выбросы. Дроссели и катушки индуктивностиДроссели, трансформаторы и вообще моточные узлы, в отличие от конденсаторов и резисторов проверяются еще сложнее, и редко какой мультиметр вообще способен измерять индуктивность. Измеритель иммитанса облегчает производство моточных узлов, а также поиск межвиткового КЗ. Путем сравнения с исправным компонентом или известным значением можно понять, что трансформатор или дроссель неисправен, так как у него сильно изменится индуктивность. Вообще для поиска короткозамкнутых витков существуют индикаторы, но измеритель иммитанса также определит эту проблему. Например слева исправный трансформатор, справа он же, но с одним накоротко замкнутым витком. Видно, что индуктивность обмотки стала существенно меньше, также виток повлиял и на результат измерения активного сопротивления обмотки. Как итог, несколько рекомендаций перед выбором RLC измерителя:Обзор особенностей, основных технических характеристик и возможностей измерителей LCR-параметровСравним несколько измерителей разной цены, оценим их преимущества, недостатки. Транзистор тестер Маркуса с AVR микроконтроллеромДля начала конечно знаменитый транзистор тестер Маркуса. Он существует в различных вариантах: в корпусе и без, со встроенным частотомером, с проверкой стабилитронов, самодельный или фабричный. Иногда его ошибочно называют ESR-метром – это не совсем корректно, так как изначально это именно тестер транзисторов, а замер ESR – только одна из его функций, которая была добавлена значительно позже. Кроме того, устройство имеет очень большое комьюнити на известном сайте vrtp.ru, где можно узнать как прошить транзистор тестер. | |
Популярные транзистор тестеры EZM Electronics MK-168 и M8
Пожалуй, для новичка – это действительно выход: такой тестер умеет измерять очень много различных компонентов. Особенно удобно проверять транзисторы, например облегчить такую задачу как найти базу эмиттер коллектор транзистора. Он также вполне нормально проверяет конденсаторы с резисторами.
Но более важно то, что этот тестер умеет измерять емкость и индуктивность, причем проводить комплексное измерение. То есть, например, у дросселя показать не только индуктивность, а активное сопротивление обмотки, также у конденсаторов, не только емкость, но и внутреннее сопротивление.
Есть конечно недостатки, из-за простой схемотехники и двухпроводного подключения компонента ему сложно работать с малыми сопротивлениями.
LC метры
Следующим шагом идут устройства на шаг выше – LCR-метры. Они не умеют проверять параметры транзисторов, но индуктивность или малое сопротивление измерят лучше чем универсальный тестер. Типичный представитель — LC100-A компании Juntek.
В отличие от предыдущего прибора прошивка ESR тестера закрыта, потому возможность обновления отсутствует.
У таких измерителей, остался недостаток универсального прибора — двухпроводное подключение. Поэтому на результат измерений может сильно влиять качество контакта с компонентом и длина проводов. Калибровка ESR тестера, конечно решает проблему длины проводов, но лучше использовать провода минимальной длины и большого сечения.
LCR+ESR метры
Для более опытных есть прибор, который относят если не к профессиональным, то уж точно близким к ним — это XJW01. Кроме стандартных замеров, он позволяет проводить комплексные, а также измерять добротность, диэлектрические потери. Тестер имеет четырехпроводное подключение.
XJW01 позволяет проводить измерения на трех частотах: 100 Гц, 1 и 7.8кГц. Продается XJW01 в виде конструктора для сборки, или собранным устройством.
Тестер может работать как в автоматическом режиме выбора измеряемой величины, так и в ручном. Лучше использовать с ручным режимом, так как автоматика иногда неверно определяет тип компонента.
Наличие четырехпроводного подключения сразу ставит XJW01 на голову выше многих других любительских приборов: такое подключение позволяет разделить цепи генератора тока и измерительной части, за счет чего длина проводов и сопротивление контакта перестает влиять на результаты замеров.
Такой тип подключения применяется в профессиональных приборах: даже там где компонент подключается прямо в клеммы прибора, также используется специальная контактная группа, состоящая из четырех контактов.
Для подключения радиодеталей используются зажимы, пинцеты или выносные контактные группы, а так как они также используют разъемы BNC для подключения, то даже фирменные устройства совместимы с показанным выше XJW01.
Фактически все то же самое есть у фирменных, но относительно бюджетных LCR-метров от фирм UNI-T и Hantek. Они также имеют четырехпроводное подключение, измерение емкости, индуктивности и сопротивления включая ESR и комплексные измерения.
Особенно выделяется новая модель измерителя Hantek 1832C, с которой можно проводить измерения на семи вариантах частоты с верхним пределом в 40 кГц. Базовая погрешность до 0,3%, есть автоматический режим измерения, режимы комплексных измерений.
В этой серии есть старшая модель – Hantek 1833C, отличающаяся расширенным диапазоном частот, но имеющая большую цену.
Hantek 1832C имеет большой экран, на который выводится одновременно все результаты тестирования. Подключение тестируемого компонента двух и четырех проводное (трех и пяти с учетом защитного контакта).
Размах тестового сигнала составляет 0,6 вольта, из-за чего можно проводить замеры многих пассивных радиокомпонентов без выпаивания из платы.
Заявленные диапазоны измеряемых параметров:
При этом часто современные устройства могут измерять на частотах до 100 кГц (например Hantek 1833C), что позволяет тестировать компоненты на более высоком уровне. Особенно это помогает при отборе конденсаторов для работы в импульсных блоках питания, частота работы которых находится на сопоставимом значении.
Но нужно быть внимательным: у многих измерителей LCR часто декларируется диапазон частот до 100 кГц. Однако если внимательно прочитать инструкцию, то станет ясно, что в режиме измерения на такой частоте максимальная измеряемая емкость существенно ниже.
Сравнение и рейтинг измерителей импеданса: лучшие измерители RLC 2020 года — основные достоинства и недостатки
Чтобы выбрать оптимальный с точки зрения мастера по ремонту формат или тип прибора для измерения ESR проведем сравнение 3-х основных категорий:
Лучшие LCR-метры профессионального уровня | Цифровой измеритель LCR Hantek 1832C | Основные плюсы: точность измерения, частота до 40 кГц, прибор уже готов к использованию. Минусы: цена |
Высокоточный RLC метр XJW01 | Основные плюсы: точность измерения, измерение индуктивности до 1000 Гн, цена. Минусы: только три тестовые частоты с максимальной в 7,8 кГц, упрощенная индикация, необходимость доработки для автономного питания. | |
Лучший LCR-метр среднего класса | Измеритель LC100-A с щупами для SMD | Основные плюсы: простая конструкция, компактность, большой диапазон измерения, низкая цена. Минусы: невысокая точность измерения, двухпроводная схема подключения компонента. |
Лучшие бюджетные транзистор тестеры базового уровня | Тестер компонентов LCR-T4 | Основные плюсы: очень высокая функциональность, кроме измерения LCR можно тестировать транзисторы, диоды, тиристоры и пр., возможность обновления прошивки, цена. Минусы: не очень высокая точность измерение малых сопротивлений и ESR, двухпроводное подключение компонента, измерение на низкой частоте, невозможность измерения без выпаивания компонента. |
Многофункциональный тестер элементов GM328 ESR |
Из особенностей — измерение на частотах до 200 кГц, до 12 измерений в секунду, напряжение смещения внешнего конденсатора до 40 В.
Резюмируя все вышесказанное подчеркнем, что для начинающего радиолюбителя более чем достаточно обычного транзистор тестера, который перекроет 90% его задач. Опытным скорее всего потребуется измеритель посложнее, и здесь можно смотреть либо на готовые приборы от брендов среднего уровня, либо на конструкторы типа XJW01.
Тем, кто работает в организациях на которые распространяется сфера государственного регулирования обеспечения единства измерений, будут нужны приборы, числящиеся в госреестре, к которым можно заказать метрологическую поверку. Это также отличие профессиональных приборов от любительских, хотя и качественных.