чем протирать изоляторы 10 кв
Содержание материала
V. ЭКСПЛУАТАЦИЯ ЭЛЕКТРИЧЕСКИХ УСТРОЙСТВ. РАСПОЛОЖЕННЫХ В РАЙОНАХ С ЗАГРЯЗНЕННОЙ АТМОСФЕРОЙ
Основным способом обеспечения безаварийной работы изоляции ЛЭП и РУ, расположенных в районах с загрязненной атмосферой, является усиление изоляции. Вместе с тем усиление изоляции не исключает периодической очистки ее от загрязнений. Усиление изоляции во многих случаях лишь удлиняет период между чистками. Какое-либо единое нормирование периодичности чисток невозможно. Периодичность чисток зависит от характера загрязнений и погодных условий. Лишь на основе местных условий для каждой установки в отдельности может быть определена периодичность планово-предупредительных чисток.
Самоочистка изоляции возможна при большой интенсивности дождей, если осадки на изоляторе не носят характера сцементировавшихся отложений.
Обычным средством ухода за загрязненными изоляторами в настоящее время все же является протирка их вручную тряпками, ветошью и т. д. Такой способ очистки, помимо его трудоемкости, требует отключения оборудования на время чистки, снижая надежность электроустановок.
Для облегчения удаления поверхностных загрязнений с изолятора при чистке тряпки смачиваются:
слабой соляной кислотой (теплый 10%-ный раствор с температурой 50—60°С) для удаления цементной пыли, подвергшейся схватыванию;
тринатрийфосфатом или бензином для смолистых или жирных отложений;
водой с присадкой моющих средств или паст, используемых в быту;
водой с отмученной глиной и с присадкой для усиления воздействия 15 — 20% раствора соляной кислоты для механического стирания корки загрязнителя.
В некоторых странах при обтирках используется изопропиловый спирт, четыреххлористый углерод и т. д.
Не могут быть рекомендованы для очистки бытовые пасты и моющие средства, в состав которых входят наполнители (например, пемза, песок), которые могут повредить глазурь. Такие пасты наносят из глазури не видимые глазом царапины, в которых в дальнейшем может скапливаться грязь и они в последующем будут служить дорожками для разряда. С этой же стороны отмучивание глины должно производиться с большой тщательностью в двух-трех водах.
После чистки изоляторов электропроводными составами обязательно тщательное удаление их обмывкой и протиркой, что должно исключить перекрытия.
Многократные попытки найти решения по механизации очистки изоляторов от загрязнений не дали положительных результатов. Так, в свое время разрабатывавшиеся конструкции подвижных щеток, укрепляемых на изолирующей штанге и приводимых вручную или пневматическим двигателем, не дали возможности решить вопрос, поскольку конфигурация изоляторов весьма разнообразна и сложна.
Также не оправдали себя щетки, связанные с пылесосом, поскольку у изоляторов имеются труднодоступные места и т. п.
Отдельные энергосистемы из-за сильно цементирующихся отложений применяют периодический демонтаж изоляторов, с тем чтобы их обрабатывать в стационарных мастерских. Для улучшения работы изоляторов в загрязняемых районах предлагались способы, повышающие разрядные характеристики их на больший срок, чем у обычных. К таким способам относятся обогрев, гидрофобные покрытия и т. д., опыт применения которых освещен в разделе II.
Основным недостатком всяких консистентных гидрофобных паст, на основе солидола, вазелина, церезина и т. д. является то, что после испарения из них растворителей большие трудности представляет последующее их удаление, после того как они перестают быть эффективными из-за поверхностного и объемного загрязнения.
При удалении паст пользуются растворителями — бензином, скипидаром и т- д., но это трудоемкая работа, и при большой высоте изолятора, например, 220 кВ требуются меры, обеспечивающие безопасность персонала, так как лазание по скользкому фарфору, обработанному жирами, весьма опасно.
Загрязнения поверхности изоляторов и борьба с ними
Загрязнение и увлажнение изоляторов значительно снижает их разрядное напряжение. Особенно опасно для изоляции одновременное действие загрязнения и увлажнения; разрядное напряжение настолько снижается, что может оказаться ниже рабочего напряжения, что приводит к перекрытию загрязненных и увлажненных изоляторов. Если это перекрытие происходит на шинах подстанции, то оно приводит к полному обесточению подстанции, т.е. к тяжелой аварии.
Увлажнение, вызванное туманом, опаснее дождя. При тумане увлажняется вся поверхность изолятора (как верхние, так и нижние поверхности его юбок), в то время как при дожде часть поверхности изолятора остается сухой. Загрязнение и туман в отдельности не так страшны, опасно их совместное действие.
Различают следующие виды загрязнения:
1. Загрязнения от топочных уносов (например, угольных котельных).
2. Загрязнения от химических, металлургических и цементных (или подобных им заводов).
3. Соляные загрязнения, возникающие вследствие осаждения на поверхности изоляторов мелкой морской соленой водяной пыли на линиях, проходящих вблизи моря или эрозии засоленных почв.
По степени стойкости загрязнения делятся на:
1. Легко очищающиеся с поверхности.
2. Образующие на поверхности изоляторов крепко пристающий несмывающийся слой.
3. Растворимые в воде соли.
В районах с интенсивным загрязнением атмосферы применяются следующие меры для предотвращения аварий, вызванных перекрытием загрязненной изоляции:
1. Учет «розы ветров» при выборе места сооружения ОРУ по отношению к источнику загрязнения.
2. Применение устройств для очистки газов от топочных уносов (электрофильтры, мокрая золоочистка). Эти способы очистки газов являются достаточно эффективными, уходящие газы очищаются от загрязняющих их частиц на 95 – 98%.
3. Применение высоких дымовых труб (на современных пылеугольных электростанциях применяются дымовые трубы высотой до 240м и более). При высоких дымовых трубах загрязняющие частицы, выходящие из труб (после очистки газов фильтрами), рассеиваются воздушными течениями на большие площади, и плотность оседающих загрязняющих осадков будет невелика. Изоляция ОРУ, расположенных на небольшом расстоянии от источника загрязнения, практически не загрязняется.
Если выполнены требования по п.п. 1, 2 и 3, то применение других мер борьбы с загрязнением изоляции на электрических станциях обычно не требуется, обеспечивается нормальная эксплуатация ОРУ.
При невыполнении требований п.п. 1, 2 и 3 для уменьшения вероятности перекрытия загрязненной изоляции приходится применять другие меры, главным образом по периодической очистке загрязненной изоляции. К таким мерам относятся:
4. Периодическая очистка (вручную) загрязненной изоляции и обтирка сухой ветошью, а в случае стойких загрязнений (цемент и др.) – обмывка тряпками или кистями, смоченными специальными растворителями. Это очень трудоемкий метод; кроме того, он требует поочередного отключения отдельных частей ОРУ, иногда с уменьшением надежности электроснабжения отдельных потребителей; при большом количестве переключений возрастает вероятность ошибок персонала, что может привести к авариям и несчастным случаям с людьми.
5. Обмывка водой специально обученным персоналом из шланга под рабочим напряжением. Этот метод не требует обесточения установки; однако он не нашел широкого распространения по следующим причинам:
– не всякая вода удовлетворяет требованиям по величине удельного сопротивления; удельное сопротивление воды при обмывке изоляторов сплошной струей под давлением 0,5 – 1МПа должно быть не ниже 15 Ом ∙ м;
– возможны перекрытия от брызг, попадающих при обмывке на соседнюю загрязненную, еще не обмытую изоляцию. Это приводит к тяжелым авариям, особенно если перекрытие изоляции произошло на шинах РУ;
– не всякое загрязнение можно смыть.
Разновидностью обмывки изоляторов из шланга под рабочим напряжением является обмывка прерывистой струей воды. Для образования прерывистой струи воды применяется роторный прерыватель, позволяющий получить струю, отдельные участки которой разделены воздушными промежутками.
По дальности вылета она не уступает обычной струе, создаваемой стволом с насадкой соответствующего диаметра.
Как показал опыт, применение обмыва изоляторов водой снижает трудозатраты на очитку изоляторов в 4 – 5 раз, а использование высоконапорных струй позволяет произвести обмыв одной гирлянды ВЛ 500кВ за 1 – 1,5 мин при расходе воды около 100л.
Удельное сопротивление воды допускается не менее 10 Ом ∙ м.
При применении прерывателя струи воды для обмывки изоляторов под рабочим напряжением исключается ток утечки по струе и тем самым повышается безопасность работ. Рис.4.1. Роторный прерыватель
струи воды для отмывки изоляторов
6. Очистка изоляторов под напряжением при помощи изолирующих штанг со щеточным механизмом. Этот метод применим лишь для очистки сухих, несцементировавшихся (рыхлых) загрязнений. При очистке изоляторов ЗРУ щетки снабжаются пылесосом.
7. Увеличение количества стандартных элементов в гирлянде или колонке опорных изоляторов. Это повышает разрядное напряжение загрязненной изоляции и увеличивает промежутки времени между очистками.
8. Применение в ОРУ сборных колонок, собранных из опорно-штыревых изоляторов специального типа с повышенной длиной пути утечки (табл.2.7), а также применение проходных изоляторов и усиленной внешней изоляцией для районов с повышенной степенью загрязнения.
9. Применение подвесных изоляторов специального типа для районов интенсивного загрязнения (рис.2.5, ж – м, табл.2.3).
10. Применение в ОРУ проходных изоляторов выключателей с обогревом. Опыт показал, что при обогреве при наличии загрязнения и увлажнения разрядное напряжение изолятора примерно в 2 раза выше, чем без обогрева, т.к. на подсушенной поверхности изолятора значительно меньше задерживаются загрязняющие частицы. Для проходных изоляторов силовых трансформаторов (вводов) искусственный обогрев не требуется. Обогрев вводов осуществляется теплом, выделяющимся в трансформаторе.
11. Применение изоляторов с полупроводящей глазурью. Распределение напряжения по загрязненной поверхности фарфора резко неравномерное, что приводит к сильному снижению напряжения перекрытия гирлянд. Применение полупроводящей глазури, нанесенной равномерно на поверхность фарфора, предотвращает возникновение такой неравномерности распределения напряжения; разрядное напряжение загрязненной гирлянды значительно повышается. Благоприятную роль также играет подсушка поверхности изоляторов вследствие подогрева токами утечки по полупроводящей глазури. Эти токи утечки очень малы и не создают значительной потери энергии. Сопротивление изолятора ПФ60-А (рис.2.5., д), покрытого полупроводящей глазурью, составляет 50 – 100Мом.
12. Применение гидрофобных (водоотталкивающих) покрытий (турбинные и трансформаторные масла) рекомендуется для ОРУ-110кВ и выше, расположенных в зонах с IV СЗА и выше (табл.3.1) при цементирующихся уносах, в зонах уносов химических предприятий с большим содержанием в выбросах легкорастворимых веществ, приводящих к существенному повышению проводимости естественных осадков. Нанесение покрытий может осуществляться под рабочим напряжением специальными изолирующими штангами, снабженными компрессорами.
Применяются и другие пасты для обработки изоляторов в разных зонах СЗА, для различных видов загрязнений и климатических условий.
Покрытие не смачивается водой, образование на ней сплошной пленки влаги становится невозможным (остаются лишь отдельные капли). Это повышает разрядное напряжение примерно на 20%. Кроме того, значительно облегчается чистка изолятора от трудноудаляемых сцементировавшихся загрязнений. Очистка производится путем протирки, тряпками, смоченными в растворителях. Пленка покрытия растворяется и удаляется вместе со слоем загрязнения.
Чем протирать изоляторы 10 кв
7. СРЕДСТВА СВЯЗИ, ДИСПЕТЧЕРСКОГО И ТЕХНОЛОГИЧЕСКОГО УПРАВЛЕНИЯ
7.1. Общие требования
7.1.1. Требования, содержащиеся в настоящем разделе, должны соблюдаться при выполнении работ на кабельных и воздушных линиях связи; на оборудовании и устройствах СДТУ, расположенных в аппаратных залах, кроссах, радиоузлах связи и помещениях на энергетических предприятиях; в устройствах связи, на установках высокочастотной связи по ВЛ, релейной защиты и телемеханики; в установках промышленного телевидения и вычислительных устройствах.
7.1.2. Ответственный руководитель работ должен назначаться при работах, выполняемых согласно п.2.1.5 настоящих Правил, и работах:
по устройству мачтовых переходов, замене концевых угловых опор;
по испытанию КЛС;
с аппаратурой НУП (НРП);
на фильтрах присоединения без включения заземляющего ножа, исключая осмотры фильтров без их вскрытия.
Выдающему наряд разрешается назначать ответственного руководителя работ и при других работах помимо вышеперечисленных.
7.1.3. Допускается совмещение ответственным руководителем или производителем работ обязанностей допускающего в устройствах СДТУ, если для подготовки рабочего места не требуется оперировать коммутационными аппаратами. При этом допускающему разрешается снимать предохранители и совместно с членом бригады устанавливать переносные заземления.
7.1.4. В устройствах СДТУ по распоряжению допускается проводить работы, указанные в разделе 2.3 настоящих Правил, и работы:
на отключенных ВЛС и КЛС, не подверженных влиянию линий электропередачи и фидерных радиотрансляционных линий I класса;
по ремонту, монтажу и наладке устройств СДТУ, кроме аппаратуры высокочастотной связи, расположенной в РУ, включая элементы обработки и присоединения высокочастотных каналов связи.
7.1.5. При работе на участках пересечения и сближения кабельных или воздушных линий связи с ВЛ напряжением 750 кВ должны выполняться требования действующих Указаний по защите персонала и сооружений связи и радиофикации на участках пересечения и сближения с линиями электропередачи напряжением 750 кВ.
7.1.6. Работа на устройствах СДТУ, расположенных на территории РУ, должна быть организована в соответствии с п.2.2.17 настоящих Правил.
Работа на высокочастотных заградителях, установленных на ВЛ вне территории РУ, должна проводиться по нарядам, выдаваемым персоналом, обслуживающим ВЛ.
Чистка изоляторов ВЛ
Чистка вручную производится в случаях невозможности применения обмыва изоляции струей воды или малой эффективности последнего чистой сухой ветошью при пылевых несцементировавшихся загрязнениях, а при наличии на поверхности изоляторов трудноудаляемых пленок — ветошью или кистью, смоченными различными растворителями (табл. 1).
Обмыв изоляторов ВЛ до 500 кВ включительно производится специально обученным персоналом струей воды под давлением 0,5 — 1 МПа (5 —10 кгс/см2) при минимально допустимых расстояниях по струе воды между насадкой и обмываемым изолятором (табл. 2).
Таблица 1. Препараты для чистки изоляторов
Наименование препарата |
Диаметр выходного отверстия насадки, мм |