чем полезны аминокислоты для организма

Аминокислоты и микроэлементы в парентеральном питании у детей

Для проведения парентерального питания у детей рекомендуется использовать специализированные растворы аминокислот, наиболее адаптированные по составу незаменимых аминокислот для раннего возраста. Приведены рекомендации в зависимости от возраста ребенка.

To process parenteral nutrition in children, it is recommended to use special amino acids solutions, whose composition of irreplaceable amino acids is mostly adapted for early age. The recommendations are given regarding the age of a child.

В клинической педиатрии нередко возникают ситуации, когда ребенок по тем или иным причинам не хочет, не может или не должен принимать пищу естественным путем. В таких ситуациях на помощь приходит внутривенное парентеральное питание (ПП) [1–4].

Необходимость ПП объясняется тем, что ребенка, особенно раннего возраста, нельзя длительный период оставлять без питания, так как его рост и развитие продолжается и во время заболевания. В подобных ситуациях перед лечащим врачом наиболее остро встает проблема обеспечения ребенка всеми необходимыми нутриентами. Данная задача усугубляется тем, что в случае болезни дети значительно сильнее, чем взрослые, страдают при недостаточном питании, что обусловлено некоторыми анатомо-физиологическими особенностями их организма [2, 5–10]:

У растущего ребенка единственным источником восполнения потерь заменимых и незаменимых аминокислот служат белки пищи [5, 11–13]. Белок является основой многих биологически важных активных веществ. При недостаточном поступлении белка с пищей в печени снижается синтез специ­фических белков и ферментов, в том числе принимающих участие в синтезе аминокислот [14, 15]. В этой связи особую актуальность приобретает назначение ПП, способного обеспечить организм ребенка в необходимых аминокислотах, лишенных по различным причинам возможности естественного перорального питания [16–19].

В цитоплазме большинства клеток содержится 20 аминокислот, из которых организм синтезирует специфические белки [14, 15, 20]. Восемь аминокислот не могут быть синтезированы в организме и должны поступать в кровь в готовом виде через кишечник (после гидролиза белка) или парентеральным путем [7–10, 14]. Эти аминокислоты называются незаменимыми (эссенциальными). К ним относятся валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин [14, 20]. Суточная потребность человека в каждой из незаменимых аминокислот составляет около 1 г, остальные 12 аминокислот (аланин, аргинин, аспарагин, цистин, цистеин, глутамин, глицин, орнитин, гистидин, серии, тирозин, таурин) могут превращаться из одной в другую и называются заменимыми (неэссенциальными) [15, 21].

Однако это деление условно, поскольку существуют переходные формы, например цистин и тирозин, которые в нормальных условиях являются заменимыми, но при определенных обстоятельствах, когда невозможны нормальные метаболические процессы, становятся незаменимыми, например, при критических состояниях и у новорожденных [11–13, 18]. Некоторые аминокислоты, в избытке получаемые организмом в нормальных условиях, например глицин, не утилизируются полностью и в больших количествах выделяются почками [11–13, 18, 22].

К условно незаменимым аминокислотам относятся L-аргинин и L-гистидин, так как в их отсутствие процессы синтеза белка значительно снижены [11–13, 18, 22]. Организм может их синтезировать, но при некоторых патологических состояниях и у маленьких детей они могут синтезироваться в недостаточном количестве [11–13, 15]. Аминокислоты, введенные в организм внутривенно, входят в один из двух возможных метаболических путей: анаболический путь, в котором аминокислоты связываются пептидными связями в конечные продукты — специфические белки; метаболический путь, при котором происходит трансаминация аминокислот [3, 4, 6, 16, 19, 23].

Аминокислота L-аргинин особенно важна, так как она способствует оптимальному превращению аммиака в мочевину. Так, L-аргинин связывает токсичные ионы аммония, которые образуются при катаболизме белков в печени. L-яблочная кислота необходима для регенерации L-аргинина в этом процессе и как энергетический источник для синтеза мочевины [16, 17, 21].

Наличие в препаратах заменимых аминокислот L-орнитин аспартата, L-аланина и L-пролина также важно, так как они уменьшают потребность организма в глицине. Поскольку эта аминокислота слабо усваивается, при ее замене развитие гиперамониемии становится невозможным. Орнитин стимулирует глюкозо-индуцированную выработку инсулина и активность карбамоилфосфатсинтетазы, что способствует увеличению утилизации глюкозы периферическими тканями, синтезу мочевины и, в сочетании с аспарагином, уменьшению уровня аммиака. Содержащийся в растворах фосфор активизирует глюкозофосфатный цикл [19, 21, 24].

Для проведения ПП у детей рекомендуется использовать специализированные растворы аминокислот, наиболее адаптированные по составу незаменимых аминокислот для раннего возраста. В противном случае при использовании аминокислот, предназначенных для взрослых, ребенок не получает в достаточном количестве такие аминокислоты, как глутамин, валин, серин, тирозин, цистеин, таурин, что негативно сказывается на продолжающемся развитии детского организма [11–13, 20, 24, 25].

Кроме того, для обеспечения нормального роста детям требуется более высокое снабжение организма незаменимыми аминокислотами, чем взрослым. Следует учитывать, что для детей раннего возраста незаменимой аминокислотой также является гистидин, а для маловесных детей незаменимыми также являются цистеин и тирозин [11–13].

Помимо этого, у новорожденных понижена активность фермента фенилаланин-гидроксилазы, обеспечивающего превращение в печени фенилаланина в тирозин [11–13, 20, 25]. По этой причине использование у детей аминокислотных препаратов, предназначенных для взрослых, приводит к избытку фенилаланина и дефициту тирозина в организме. Избыток фенилаланина оказывает нейротоксическое действие у недоношенных детей, поэтому концентрация ароматических аминокислот в растворах снижена [11–13, 20, 25]. Аминокислоты с разветвленной цепью (лейцин, изолейцин, валин) способствуют созреванию ЦНС. Таурин, синтезируемый в организме новорожденных из цистеина, также является незаменимой аминокислотой [11–13, 20, 25]. Указанная аминокислота участвует в очень важных физиологических процессах у детей, в частности, в регуляции входящего кальциевого тока, возбудимости нейронов, стабилизации мембран. Таурин способствует развитию сетчатки глаза и всасыванию жирных кислот длинной цепи без участия желчных кислот [11–13, 20, 25].

Суточная потребность детей раннего возраста в незаменимых аминокислотах представлена в табл. 1 [11–13, 20, 25].

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Таким образом, от качества аминокислотного раствора, содержащего максимально полный набор незаменимых аминокислот, зависит дальнейшее правильное формирование и созревание органов и систем ребенка, особенно у детей раннего возраста и длительно находящихся на искусственном ПП.

В педиатрии чаще используются так называемые специализированные растворы аминокислот, предназначенные для новорожденных, недоношенных и младенцев, находящихся на ПП. На сегодняшний день основными источниками аминного азота при проведении ПП являются растворы кристаллических аминокислот.

Главное современное требование, предъявляемое к растворам аминокислот, — обязательное содержание всех незаменимых аминокислот, синтез которых не может осуществиться в организме ребенка (изолейцин, фенилаланин, лейцин, треонин, лизин, триптофан, метионин, валин).

Рекомендации по введению аминокислот различны в зависимости от возраста ребенка — у новорожденных суточная потребность составляет от 1,1–3,5 (4) г/кг/день, у детей младше 3 лет — до 2,5 г/кг, с 3–5 лет — от 1 до 2,1 г/кг, у детей старше 5 лет — от 1–2 г/кг/массы тела [4, 6, 18, 22, 23].

Растворы аминокислот Инфезол® 40 и Инфезол® 100 содержат все незаменимые аминокислоты, которые не могут быть синтезированы организмом самостоятельно (табл. 2). Инфезол® 40 и Инфезол® 100 дополняют друг друга. Инфезол® 40 применяется для профилактики и лечения умеренного дефицита аминокислот. Инфезол® 40 может вводиться через периферический венозный катетер и содержит ксилит, который предотвращает протеолиз. Инфезол® 100 подходит для состояний с высоким дефицитом аминокислот и содержит 19 из 20 аминокислот.

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

При использовании ПП необходимо помнить о витаминах и микроэлементах (табл. 3 и 4).

Среди всех микроэлементов для нормального функционирования органов и систем ребенка особое значение имеют цинк, селен и медь, которые являются обязательным компонентом антиоксидантной системы [16, 26, 27]. Цинк входит в состав многих белков, регулирующих уровень транскрипции и биосинтеза нуклеиновых кислот и протеинов [19, 21]. Снижение уровня содержания цинка сопровождается угнетением активности металлопротеиназ, что приводит к нарушению фагоцитоза, присоединению инфекции при неадекватном иммунном ответе [25].

Селен является неотъемлемым компонентом каталитического центра основного фермента антиоксидантной системы — глутатионпероксидазы, обеспечивающей инактивацию свободных форм кислорода [27, 28]. Он необходим для антиоксидантной защиты клеточных мембран, потенцирует действие других антиоксидантов — токоферола, ретинола и др. Селен повышает реакцию лимфоцитов на различные митогены, повышает продукцию интерлейкинов-1 и 2, участвуя в реализации клеточного и гуморального иммунных ответов [27–29].

Несмотря на положительные стороны проведения ПП в ряде случаев отмечаются негативные стороны, наиболее частыми из которых являются жировая иммуносупрессия, передозировка нутриентами, гипергликемия, гипертриглицеридемия, атрофия слизистой оболочки желудочно-кишечного тракта (при дефиците энтерального питания), увеличение риска септических осложнений [30, 31]. При продолжительном проведении ПП у детей наступает атрофия слизистой оболочки кишечника, что может сопровождаться ее изъязвлением, атрофией секретирующих желез, последующей ферментной недостаточностью, холестазом. При этом нарушается кишечный микробиоценоз и наблюдается атрофия ассоциированной с кишечником лимфоидной ткани, что приводит к снижению общей иммунной защиты [2, 23, 32].

Помимо вышесказанного, до сих пор остается открытым вопрос о клинической значимости наличия некоторых не незаменимых аминокислот или различия в концентрации незаменимых и не незаменимых аминокислот у детей разных возрастных групп. Остаются сомнения по поводу того, что универсальный аминокислотный состав инфузионных растворов может подходить для всех пациентов, так как потребность в аминокислотах зависит от возраста и заболевания.

Вместе с тем надо хорошо понимать, что на первом месте при лечении больных в критических состояниях стоит максимальное обеспечение ребенка классическими ингредиентами (жиры, белки и углеводы) в адекватных количествах и формах (ЭП и ПП). Парентеральное питание, дополнительно обогащенное фармаконутриентами (селеном, цинком, медью), иммунодобавками (рыбий жир, глутамин, аргинин и др.), в большинстве исследований показывает положительный биологический и клинический эффект (снимается воспаление, предотвращается развитие ответа острой фазы). Однако необходимы дальнейшие крупномасштабные, многоцентровые исследования для подтверждения эффективности использования специализированных аминокислот (глутамин, аргинин) у детей в критических состояниях.

Литература

Ю. В. Ерпулёва, доктор медицинских наук, профессор

ГБОУ ВПО РНИМУ им. Н. И. Пирогова МЗ РФ, Москва

Источник

Аминокислоты: свойства и польза

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Что такое аминокислоты

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Аминокислоты – это органические соединения, которые сочетают в себе свойства аминов и кислот, образующие белок. В каком-то смысле они как деталь конструктора (белка), являющегося основой жизни.

Точно так же, как можно по-разному собрать предметы из конструктора, есть несколько способов, которыми 22 аминокислоты могут объединиться в последовательность для создания различных белковых структур, таких как гормоны, ферменты, иммунная система, клетки или мышечные волокна.

Так называемые «незаменимые», действуют на организм, подобно витаминам, их отсутствие в организме может привести к серьезным заболеваниям или даже к летальному исходу.

К незаменимым аминокислотам относятся:

Когда продукты содержат все незаменимые аминокислоты, их называют полноценными белками. Существует распространенное заблуждение, что растительные белки не содержат всех незаменимых аминокислот. Это неправда. В то время как в большинстве растительных источников белков обычно отсутствуют одна или две незаменимые аминокислоты в значительных количествах, другие источники растительных белков могут дополнять эти аминокислоты, обеспечивая полноценные белки.

Заменимые аминокислоты организм вырабатывает самостоятельно, независимо от того, есть ли в вашем рационе продукты, содержащие их.

Существуют также условно незаменимые аминокислоты, которые вырабатываются, например, во время борьбы с болезнью или со стрессом.

Условное незаменимые аминокислоты:

Сбалансированная диета – важное условие поступления в организм незаменимых и заменимых аминокислот. Если их не будет хватать, телу будет куда сложнее вырабатывать белки, необходимые для нормального функционирования мышц и тканей.

Изучайте тонкости антивозрастной медицины из любой точки мира. Для удобства врачей мы создали обучающую онлайн-платформу Anti-Age Expert: Здесь последовательно выкладываются лекции наших образовательных программ, к которым открыт доступ 24/7. Врачи могут изучать материалы необходимое количество раз, задавать вопросы и обсуждать интересные клинические случаи с коллегами в специальных чатах

Польза для организма

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Для того, чтобы оценить масштаб работы, которую аминокислоты проделывают в нашем организме, достаточно перечислить основные их функции и возможности:

Помощь в формировании и росте мышц, соединительной ткани и кожи;

Поддержка мышечного тонуса и силы тканей;

Обеспечение тела энергией;

Поддержание здоровья волос и кожи.

Различные добавки с содержанием аминокислот обычно рекомендуют спортсменам и людям, ведущим активный образ жизни, чтобы повысить продуктивность и сохранить силу мышц.

Кроме того, прием аминокислот может уменьшить естественную потерю мышечной массы у пожилых людей и восстановить объем мышц, особенно если они тренируются с отягощениями.

Аминокислоты и старение

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Пять из двадцати аминокислот, формирующих белок в организме человека, имеют проблемы с усвоением. Биологическое старение начинается с недостаточного всасывания в кишечнике хотя бы одной или всех пяти из этих аминокислот.

Поскольку наличие всех 20 аминокислот человеческого белка необходимо для создания любого существенного белка, неспособность абсорбировать определенный белок из кишечника вынуждает лимфатическую систему «красть» недостающее питание из организма.

Например, такой признак возраста как морщины объясняется тем, что теряется коллаген. А он “крадется” организмом из-за содержания в нем аминокислот. Снижение коллагена в коже и субдуральные гематомы, часто наблюдаемые при старении, являются внешними структурными признаками активности лимфатической системы. При старении лимфатическая система становится чрезвычайно агрессивной, перерабатывая редко используемые структуры для обеспечения недостающих аминокислот.

Приобретенное повреждение желудочно-кишечного тракта или потеря рецепторов для определенных аминокислот является основной причиной старения.

Получайте знания, основанные на доказательной медицине из первых уст ведущих мировых специалистов. В рамках Модульной Школы Anti-Age Expert каждый месяц проходят очные двухдневные семинары, где раскрываются тонкости anti-age медицины для врачей более 25 специальностей

Краткие выводы

Сбалансированная диета может помочь обеспечить здоровое потребление незаменимых и заменимых аминокислот в течение дня.

Аминокислоты помогают строить белковые цепи и играют вспомогательную роль почти во всех частях вашего тела.

Их дефицит может ускорить процессы старения.

Список использованной литературы

Saini, R. & Zanwar, A. A. (2013) Arginine Derived Nitric Oxide: Key to Healthy Skin, Bioactive Dietary Factors and Plant Extracts in Dermatology (pp. 73-82).

Reda, E., D’Iddio, S., Nicolai, R., Benatti, P. & Calvani, M. (2003) The Carnitine System and Body Composition Acta Diabetol, issue 40, (pp. 106-103).

Источник

Для чего организму аминокислоты?

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Многие люди, связанные со спортом, неоднократно слышали про аминокислоты. Эти вещества считаются витаминами силы и выносливости. При активных физических нагрузках их необходимо принимать дополнительно в виде биологически активных добавок или спортивного питания.

Что такое аминокислоты?

Аминокислоты — это частицы, из которых состоит белок. Всего в организме их больше 20, каждая из которых помогает синтезировать свой вид белка. Они участвуют в процессе создания ферментов, гормонов, белков.

Это основной строительный материал, который отвечает за большинство процессов в организме:

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма Высокое содержание качественного белка (21 г) в каждой порции и приятный привкус ванили вам подарит Сывороточный протеин Fitness Catalyst (ванильное мороженое). Концентрат сывороточного протеина с отличным аминокислотным профилем без искусственных подсластителей, разрыхлителей, усилителей вкуса и консервантов подходит для поклонников активного образа жизни и профессиональных атлетов.

Если хотя бы один вид соединений недоступен человеку или не потребляется в нужном количестве, это может сказаться на здоровье.

Симптомы недостатка?

Аминокислоты — органические кирпичики, из которых строится белок. Если их не хватает, то замедляются многие процессы в организме. Могут наблюдаться следующие проблемы:

Внимание! Важность этих соединений для организма крайне высока. Они нужны не только бодибилдерам или профессиональным спортсменам, но и тем, кто хочет быть здоровым и крепким.

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Какие бывают аминокислоты?

Все аминокислоты делятся на 3 группы. Это незаменимые, заменимые, а также те, которые человеческий организм вырабатывает самостоятельно, но в небольших количествах.

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма Валин, изолейцин и лецин содержит Комплекс аминокислот BCAA из линейки спортивного питания Siberian Super Natural Sport, который обеспечивает мышцы питательными веществами, помогает быстрее восстанавливаться, замедляет процессы катаболизма и устраняет ощущение перетренированности.

Заменимые соединения: аланин, аспарагиновая кислота, аспартат, глютамин, глутамат, глицин, пролин, серин..

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Внимание! Условно-незаменимые аминокислоты в малых дозировках вырабатываются в организме, но слишком быстро тратятся, особенно при физических нагрузках. Поэтому необходим дополнительный прием препаратов с аминокислотами, чтобы была возможность переносить долгие и тяжелые тренировки.

Как принимать аминокислоты?

Чтобы получить максимальную пользу от аминокислот, их нужно правильно принимать. Тонкости приема зависят от желаемого результата, вида тренировок (аэробные, анаэробные) и интенсивности физических нагрузок. Существует несколько разных мнений по времени приема аминокислот. Кто-то считает, что если соединения принимают для спорта, чтобы набрать мышечную массу, то их следует употреблять примерно за час до занятий, во время тренировок и сразу после тренировки, в течение одного или двух часов, чтобы восполнить потери аминокислот, потраченные на мышечную работу. В некоторых случаях назначают дополнительный прием с утра. Другое мнение гласит, что во время интенсивной тренировки не следует принимать аминокислоты или протеины, т. к. большая часть крови, до 65%, уходит на кровоснабжение мышц. Поэтому ухудшается кровоснабжение желудочно-кишечного тракта и, соответственно, снижается всасывание выпитых аминокислот. Еще одна гипотеза состоит в том, что важно не время приема, а количество принятых аминокислот, поэтому можно их принять в любое время дня.

Поскольку избыток белка и аминокислот вреден для организма, в частности, нагружает печень и почки, то полезно делать перерывы в приеме.

При диетах для сброса лишнего веса также рекомендуется принимать больше аминокислот. Если, помимо диеты, существуют физические нагрузки, в таком случае прием препаратов обеспечит сброс веса при сохранении мышечной массы. Принимать его нужно до и после похода в спортзал, а также утром.

Следует учитывать следующие детали:

Побочные действия возникают редко. Для этого необходимо в несколько раз превысить суточную норму. У лиц 55-60 лет и старше в связи с возрастом ухудшается работа желудочно-кишечного тракта, поэтому для них нежелательна высокобелковая или монобелковая диета, а необходима диета со сбалансированным содержанием белков, жиров и углеводов. Поэтому следует внимательно читать инструкцию и консультироваться с врачом.

Отказ от ответсвенности

Обращаем ваше внимание, что вся информация, размещённая на сайте Prowellness предоставлена исключительно в ознакомительных целях и не является персональной программой, прямой рекомендацией к действию или врачебными советами. Не используйте данные материалы для диагностики, лечения или проведения любых медицинских манипуляций. Перед применением любой методики или употреблением любого продукта проконсультируйтесь с врачом. Данный сайт не является специализированным медицинским порталом и не заменяет профессиональной консультации специалиста. Владелец Сайта не несет никакой ответственности ни перед какой стороной, понесший косвенный или прямой ущерб в результате неправильного использования материалов, размещенных на данном ресурсе.

Источник

Алгоритм метаболизма

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организмаавтор: А. Ю. Барановский, д. м. н., профессор, заведующий кафедрой гастроэнтерологии и диетологии Северо-Западного государственного медицинского университета им. И. И. Мечникова, врач высшей категории

Решение организационных вопросов питания у лиц старших возрастов, разработка и назначение индивидуализированных рационов рационального, профилактического и лечебного питания в существенной степени зависит от правильной оценки врачом нутриционного статуса пожилого человека, особенностей состояния обменных процессов. Именно поэтому профессионально грамотный клиницист, участвующий в решении проблем лечебно-профилактического питания у лиц пожилого и старческого возраста, должен быть достаточно хорошо ориентирован в области основ клинической биохимии и физиологии питания стареющего организма.

Белковый обмен

Белки — сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильные и аминные группы). Их биологическая роль многообразна. Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность. Значение белкового компонента питания заключается прежде всего в том, что он служит источником аминокислот.

Аминокислоты делятся на эссенциальные и неэссенциальные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина. Девять заменимых аминокислот (аланин, аргинин, аспарагиновая и глутамовая кислоты, глутамин, глицин, пролин и серин) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена — гидроксипролин — и сократительных белков мышц — 3-метилгистидин).

Большинство аминокислот имеют изомеры (D- и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.

Взаимоотношение аминокислот

По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет большое значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.

Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин — синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин. Если фенилаланина недостаточно или его метаболизм нарушен (например, при дефиците витамина С) — тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой — метионина — и образующегося из него цистеина.

Триптофан в ходе превращений, для которых необходим витамин В 6 (пиридоксин), включается в структуру НАД и НАДФ, то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.

Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (см. табл. 1).

Таблица 1. Классификация аминокислот

ВидыЭссенциальные аминокислотыНеэссенциальные аминокислоты
АлифатическиеВалин (Г), лейцин (К), изолейцин (Г, К)Глицин (Г), аланин (Г)
ДвухосновныеЛизин (К), гистидин (Г, К)*Аргинин (Г)*
АроматическиеФенилаланин (Г, К), триптофан (Г, К)Тирозин (Г, К)**
ОксиаминокислотыТреонин (Г, К)Серин (Г)
СеросодержащиеМетионин (Г, К)Цистеин (Г)**
Дикарбоновые и их амидыГлутамовая кислота (Г), глутамин (Г), аспарагиновая кислота (Г), аспарагин (Г)
ИминокислотыПролин (Г)

Обозначения: Г — глюкогенные, К — кетогенные аминокислоты; * — гистидин незаменим у детей до года; ** — условно-незаменимые аминокислоты (могут синтезироваться из фенилаланина и метионина).

Необходимые азотсодержащие соединения

Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и в менее значимых количествах — свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, также в них содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.

Синтез пуриновых оснований

Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивших с пищей, выводится в виде мочевой кислоты.

Прием белка

Обычный (но не оптимальный) ежедневный прием белка у среднестатистического человека составляет приблизительно 100 г. К ним присоединяется примерно 70 г белка, секретируемого в полость желудочно-кишечного тракта. Из этого количества абсорбируется около 160 г. Самим организмом в сутки синтезируется в среднем 240–250 г белка. Такая разница между поступлением и эндогенным преобразованием свидетельствует об активности процессов обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его метаболизме (ресинтеза белков из аминокислот, а аминокислот из аммиака и «углеродных скелетов» аминокислот).

Азотное равновесие

Для здорового человека характерно состояние азотного равновесия, когда потери белка (с мочой, калом, эпидермисом и т. п.) соответствуют его количеству, поступившему с пищей. При преобладании катаболических процессов возникает отрицательный азотный баланс, который характерен для низкого потребления азотсодержащих веществ (низкобелковых рационов, голодания, нарушения абсорбции белка) и многих патологических процессов, вызывающих интенсификацию распада (опухолей, ожоговой болезни и т. п.). При доминировании синтетических процессов количество вводимого азота преобладает над его выведением, и возникает положительный азотный баланс, характерный для детей, беременных женщин и реконвалесцентов после тяжелых заболеваний.

После прохождения энтерального барьера белки поступают в кровь в виде свободных аминокислот. Следует отметить, что клетки слизистой оболочки желудочно-кишечного тракта могут метаболизировать некоторые аминокислоты (в том числе глутамовую кислоту и аспарагиновую кислоту в аланин). Способность энтероцитов видоизменять эти аминокислоты, возможно, позволяет избежать токсического эффекта при их избыточном введении.

Аминокислоты, как поступившие в кровь при переваривании белка, так и синтезированные в клетках, в крови образуют постоянно обновляющийся свободный пул аминокислот, который составляет около 100 г.

Путь белка

75 % аминокислот, находящихся в системной циркуляции, представлены аминокислотами с ветвящимися цепями (лейцином, изолейцином и валином). Из мышечной ткани в кровоток выделяются аланин, который является основным предшественником синтеза глюкозы, и глутамин. Многие свободные аминокислоты подвергаются трансформации в печени. Часть свободного пула инкорпорируется в белки организма и при их катаболизме вновь поступает в кровоток. Другие непосредственно подвергаются катаболическим реакциям. Некоторые свободные аминокислоты используются для синтеза новых азотсодержащих соединений (пурина, креатинина, адреналина) и в дальнейшем деградируют, не возвращаясь в свободный пул, в специфичные продукты распада.

Роль печени

Постоянство содержания различных аминокислот в крови обеспечивает печень. Она утилизирует примерно ⅓ всех аминокислот, поступающих в организм, что позволяет предотвратить скачки в их концентрации в зависимости от питания.

Первостепенная роль печени в азотном и других видах обмена обеспечивается ее анатомическим расположением — продукты переваривания попадают по воротной вене непосредственно в этот орган. Кроме того, печень непосредственно связана с экскреторной системой — билиарным трактом, что позволяет выводить некоторые соединения в составе желчи. Гепатоциты — единственные клетки, обладающие полным набором ферментов, участвующих в аминокислотном обмене. Здесь выполняются все основные процессы азотного метаболизма: распад аминокислот для выработки энергии и обеспечения глюконеогенеза, образование заменимых аминокислот и нуклеиновых кислот, обезвреживание аммиака и других конечных продуктов. Печень является основным местом деградации большинства незаменимых аминокислот (за исключением аминокислот с ветвящимися цепями).

Инсулиновый ответ

Синтез азотсодержащих соединений (белка и нуклеиновых кислот) в печени весьма чувствителен к поступлению их предшественников из пищи. После каждого приема пищи наступает период повышенного внутрипеченочного синтеза белков, в том числе альбумина. Аналогичное усиление синтетических процессов происходит и в мышцах. Эти реакции связаны прежде всего с действием инсулина, который секретируется в ответ на введение аминокислот и/или глюкозы.

Некоторые аминокислоты (аргинин и аминокислоты с ветвящимися цепями) усиливают продукцию инсулина в большей степени, чем остальные. Другие (аспарагин, глицин, серин, цистеин) стимулируют секрецию глюкагона, который усиливает утилизацию аминокислот печенью и воздействует на ферменты глюконеогенеза и аминокислотного катаболизма. Благодаря этим механизмам происходит снижение уровня аминокислот в крови после поступления их с пищей. Действие инсулина наиболее выражено для аминокислот, содержащихся в кровотоке в свободном виде (аминокислот с ветвящимися цепями), и малозначимо для тех, которые транспортируются в связанном виде (триптофана). Обратное инсулину влияние на белковый метаболизм оказывают глюкокортикостероиды.

Аминокислоты на «экспорт»

Печень обладает повышенной скоростью синтеза и распада белков по сравнению с другими тканями организма (кроме поджелудочной железы). Это позволяет ей синтезировать «на экспорт», а также быстро обеспечивать лабильный резерв аминокислот в период недостаточного питания за счет распада собственных белков.

Особенность внутрипеченочного белкового синтеза заключается в том, что он усиливается под действием гормонов, которые в других тканях производят катаболический эффект. Так, при голодании белки мышц, для обеспечения организма энергией, подвергаются распаду, а в печени одновременно усиливается синтез белков, являющихся ферментами глюконеогенеза и мочевинообразования.

Избыток белка и голодание

Прием пищи, содержащей избыток белка, приводит к интенсификации синтеза в печени и в мышцах, образованию избыточных количеств альбумина и деградации излишка аминокислот до предшественников глюкозы и липидов. Глюкоза и триглицериды утилизируются как горючее или депонируются, а альбумин становится временным хранилищем аминокислот и средством их транспортировки в периферические ткани.

При голодании уровень альбумина прогрессивно снижается, а при последующей нормализации поступления белка медленно восстанавливается. Поэтому хотя альбумин и является показателем белковой недостаточности, он низкочувствителен и не реагирует оперативно на изменения в питании.

7 из 10 эссенциальных аминокислот деградируют в печени — либо образуя мочевину, либо впоследствии используясь в глюконеогенезе. Мочевина преимущественно выделяется с мочой, но часть ее поступает в просвет кишечника, где подвергается уреазному воздействию микрофлоры. Аминокислоты с ветвящимися цепями катаболизируются в основном в почках, мышцах и головном мозге.

Роль мышц

Мышцы синтезируют ежедневно 75 г белка. У среднего человека они содержат 40 % от всего белка организма. Хотя белковый метаболизм происходит здесь несколько медленнее, чем в других тканях, мышечный белок представляет собой самый большой эндогенный аминокислотный резерв, который при голодании может использоваться для глюконеогенеза.

Мышцы являются основной мишенью воздействия инсулина: здесь под его влиянием усиливается поступление аминокислот, увеличивается синтез мышечного белка и снижается распад.

В процессе превращений в мышцах образуются аланин и глутамин, их условно можно считать транспортными формами азота. Аланин непосредственно из мышц попадает в печень, а глутамин вначале поступает в кишечник, где частично превращается в аланин. Поскольку в печени из аланина происходит синтез глюкозы, частично обеспечивающий мышцу энергией, получающийся круго- оборот получил название глюкозо- аланинового цикла.

К азотсодержащим веществам мышц также относятся высокоэнергетичный креатин-фосфат и продукт его деградации креатинин. Экскреция креатинина обычно рассматривается как мера мышечной массы. Однако это соединение может поступать в организм с высокобелковой пищей и влиять на результаты исследования содержания его в моче. Продукт распада миофибриллярных белков — 3-метилгистидин — экскретируется с мочой в течение короткого времени и является достаточно точным показателем скорости распада в мышцах — при мышечном истощении скорость его выхода пропорционально снижается.

Механизм голодания

В отсутствие пищи синтез альбумина и мышечного белка замедляется, но продолжается деградация аминокислот. Поэтому на начальном этапе голодания мышцы теряют аминокислоты, которые идут на энергетические нужды. В дальнейшем организм адаптируется к отсутствию новых поступлений аминокислот (снижается потребность в зависящем от белка глюконеогенезе за счет использования энергетического потенциала кетоновых тел) и потеря белка мускулатуры уменьшается.

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Роль почек

Почки не только выводят конечные продукты азотного распада (мочевину, креатинин и др.), но и являются дополнительным местом ресинтеза глюкозы из аминокислот, а также регулируют образование аммиака, компенсируя избыток ионов водорода в крови.

Глюконеогенез и функционирование кислотно-щелочной регуляции тесно скоординированы, поскольку субстраты этих процессов появляются при дезаминировании аминокислот: углерод для синтеза глюкозы и азот — для аммиака. Существует даже мнение, что именно производство глюкозы является основной реакцией почек на ацидоз, а образование аммиака происходит вторично.

Белок в нервной ткани

Для нервной ткани характерны более высокие концентрации аминокислот, чем в плазме. Это позволяет обеспечить мозг достаточным количеством ароматических аминокислот, являющихся предшественниками нейромедиаторов.

Некоторые заменимые аминокислоты, такие как глутамат (из которого при участии пиридоксина образуется гамма-аминомасляная кислота) и аспартат, также обладают влиянием на возбудимость нервной ткани. Их концентрация здесь высока, при этом заменимые аминокислоты способны синтезироваться и на месте.

Сон после еды

Специфическую роль играет триптофан, являющийся предшественником серотонина. Именно с повышением концентрации триптофана (а следовательно, и серотонина) связана сонливость после еды. Такой эффект особенно выражен при приеме больших количеств триптофана совместно с углеводистой пищей. Повышенная секреция инсулина снижает уровень в крови аминокислот с ветвящимися цепями, которые при преодолении барьера «кровь — мозг» обладают конкурентными взаимоотношениями с ароматическими аминокислотами, но в то же время не оказывает влияния на концентрацию связанного с альбумином триптофана. Благодаря подобным эффектам препараты триптофана могут использоваться в психиатрической практике.

При заболеваниях печени

Ограничение ароматических аминокислот в рационе, в связи с их влиянием на центральную нервную систему, имеет профилактическое значение при ведении пациентов с печеночной энцефалопатией. Элементные аминокислотные диеты с преимущественным содержанием лейцина, изолейцина, валина и аргинина помогают избежать развития белковой недостаточности у гепатологических больных и в то же время не приводят к возникновению печеночной комы.

Основные пластические функции протеиногенных аминокислот перечислены в таблице 2.

Таблица 2. Основные функции аминокислот

АланинПредшественник глюконеогенеза, переносчик азота из периферических тканей в печень
АргининНепосредственный предшественник мочевины
Аспарагиновая кислотаПредшественник глюконеогенеза, предшественник пиримидина, используется для синтеза мочевины
Глутаминовая кислотаДонор аминогрупп для многих реакций, переносчик азота (проникает через мембраны легче, чем глутамин), источник аммиака, предшественник ГАМК
ГлицинПредшественник пуринов, глютатиона и креатинина, входит в состав гемоглобина и цитохромов, нейротрансмиттер
ГистидинПредшественник гистамина, донор углерода
ЛизинПредшественник карнитина (транспорт жирных кислот), составляющая коллагена
МетионинДонор метальных групп для многих синтетических процессов (в т. ч. холина, пиримидинов), предшественник цистеина, участвует в метаболизме никотиновой кислоты и гистамина
ФенилаланинПредшественник тирозина
СеринСоставляющая фосфолипидов, предшественник сфинголипидов, предшественник этаноламина и холина, участвует в синтезе пуринов и пиримидинов
ТриптофанПредшественник серотонина и никотинамида
ТирозинПредшественник катехоламинов, допамина, меланина, тироксина
ЦистеинПредшественник таурина (желчные кислоты), входит в состав глютатиона (антиоксидантная система)

Нормы потребления белка

Современные рекомендации по обеспечению пожилых людей и стариков основными питательными веществами, в первую очередь белками, свидетельствуют о целесообразном некотором снижении суточного количества белковых продуктов в пищевом рационе до 0,75–0,8 г/кг веса. Это связано с тем, что интенсивность основных физиологических функций с каждым десятилетием жизни человека после 50 лет снижается почти на 10 % (Rogers J., Jensen G., 2004), потребность белка уменьшается за счет инволюции синтетических и пластических процессов и ферментообразования, продукции гормонов, ряда биологически активных веществ, обеспечения мышечной деятельности и т. д.

Рекомендуемые нормы потребления для белка с учетом приведенных выше показателей составляют 55–62 г/сут (для мужчины весом 77 кг в возрасте 60–70 лет) и 45–52 г/сут (для женщины весом 65 кг в возрасте 60–70 лет) по выводам IV Американского национального исследования по оценке здоровья и питания (2006).

Вместе с тем установлено, что при сохранении физической активности пожилых людей (профессиональной физической нагрузки, занятий физкультурой, работы на дачном участке и т. п.) для поддержания азотного равновесия организма требуется повышение белкового обеспечения пожилого человека в количестве 1–1,25 г/кг в день. Эта же квота пищевого белка полностью обеспечит потребности пожилого человека, находящегося в состоянии стресса, болезни или ранения (Lowenthal D. T., 1990).

Рис. 1. Влияние пищевых веществ на развитие болезней избыточного питания (по А. А. Покровскому)

чем полезны аминокислоты для организма. Смотреть фото чем полезны аминокислоты для организма. Смотреть картинку чем полезны аминокислоты для организма. Картинка про чем полезны аминокислоты для организма. Фото чем полезны аминокислоты для организма

Дефицит белка = старение

Важно отметить, что организм пожилого человека очень чувствителен как к дефициту экзогенно поступающих белков, так и к их избытку. В условиях белкового дефицита прогрессирующе развиваются процессы дистрофии и атрофии клеточных структур, в первую очередь мышечной ткани, слизистых оболочек (желудочно-кишечного тракта, дыхательной системы и др.), паренхиматозных органов (поджелудочной железы, печени, эндокринных желез и др.), структур иммунной системы. Белковый дефицит питания активизирует процессы старения организма.

Механизмы патологического действия на организм пожилого и старого человека пищевой белковой перегрузки связаны в первую очередь с белковой «агрессией» печени и связанной с этим несостоятельностью ферментных систем, неполной деполимеризацией всех фракций белка, накоплением в крови токсических продуктов незавершенных окислительно-восстановительных реакций и т. д.

Белковая перегрузка

Интоксикационный процесс метаболического генеза при избыточном белковом питании пожилых и старых людей многократно усиливается по причине развития процессов гнилостной кишечной диспепсии в условиях относительной ферментной недостаточности желудка, поджелудочной железы, тонкой кишки и развития синдромов мальдигестии и мальабсорбции, а также кишечного дисбиоза (Барановский А. Ю., Кондрашина Э. А., 2008).

Белковая пищевая перегрузка в рамках интоксикационного синдрома способствует перевозбуждению центральной нервной системы, иногда — состояниям, близким к неврозам. При этом наблюдается повышенный расход витаминов в организме с формированием витаминной недостаточности.

При длительном высокобелковом питании вначале наблюдается компенсаторное усиление, а затем угнетение секреторной функции желудка и поджелудочной железы, повышается риск развития таких заболеваний, как подагра, мочекаменная болезнь.

В следующем выпуске журнала «Практическая диетология» мы продолжим рассказ о геронтологических особенностях основных видов обмена веществ пациентов пожилого и старческого возраста — углеводном и жировом обмене.

// ПД

Хотите больше новой информации по вопросам диетологии?
Оформите подписку на информационно-практический журнал «Практическая диетология»!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *