чем отличаются звезды первого и второго поколения
Чем отличаются звезды первого и второго поколения
Свет, который испустили самые первые звезды, ионизовал нейтральный водород и сделал Вселенную прозрачной для ультрафиолетового излучения. Так спустя несколько сотен миллионов лет после Большого взрыва было покончено с «темными временами» временем, когда вещество Вселенной было непрозрачным для излучения.
Первородное вещество, из которого состояла Вселенная в те времена, состояло из водорода с небольшой примесью гелия. Более тяжелые элементы (астрономы их условно называют металлами) тогда почти отсутствовали – они просто не успели наработаться в недрах звезд.
Самые чистые звезды
О том, как рождались первые звезды Вселенной, сегодня известно из теоретических работ и компьютерных вычислений. Первоначальные неоднородности темной материи собирали вокруг себя газ, в сгустках которого на определенном этапе сжатия зажигались термоядерные реакции. Последние десять лет ученые сходились во мнении, что первые звезды рождались поодиночке, были сверхмассивными и жили очень недолго. Это связано с тем, что так называемая джинсовская масса (размер коллапсирующей под действием
Cимуляция образования звезд первого поколения
Группа немецких и американских ученых под руководством Ральфа Клессена из Гейдельберга провела масштабное компьютерное моделирование и пришла к выводу, что устоявшиеся взгляды на процесс первичного звездообразования надо пересмотреть. Ученые показали, что ранняя Вселенная вряд ли была наполнена сверхмассивными одинокими звездами. Причина кроется в динамике выпадения вещества на центр гравитирующих облаков газа. Газ, выпадающий на протозвезду, вращается, поэтому движется к центру не прямым потоком, а образует вокруг гравитационного центра аккреционный диск. Выпадать на протозвезду из диска газ может лишь благодаря трению между различными слоями. Моделирование показало, что если в диск попадает больше вещества, чем он может «переварить», сам диск становится нестабильным и фрагментируется.
Астрономы создали виртуальное коллапсирующее облако из огромного количества частиц и учли физические процессы, происходящие внутри него. Спустя 60 лет после образования первой протозвезды аккреционный диск вокруг нее был стабилен и имел два спиральных рукава.
Вскоре он удвоился в размерах, стал неустойчивым и образовал внутри себя вторую протозвезду на расстоянии 20 астрономических единиц от первой. После этого в диск стало попадать больше вещества, чем в первые годы, и фрагментация продолжилась. В итоге спустя 120 лет после рождения первой звезды в пределах нескольких десятков астрономических единиц существовало уже четыре сестринские звезды. «Расстояния между некоторыми из них могло меньше орбиты Земли вокруг Солнца», — пояснили авторы исследования.
Однако самый интригующий вывод работы заключается в другом. Моделирование показало, что из ансамбля едва успевших родиться звезд одну из них иногда выбрасывало еще до того, как она успевала собрать на себя достаточное количество вещества. В отличие от массивных, звезды с малой массой эволюционируют долго и могут существовать миллиарды лет. До сего момента науке не было известно ни одной звезды из первого поколения. Солнце, например, – звезда третьего поколения, оно образовано из остатков звезд первого и второго поколений. Если вычисления физиков окажутся правильными, это откроет перед наблюдателями заманчивые перспективы. «Невероятно, но некоторые маломассивные звезды могли дожить до наших дней, что позволит нам исследовать самые ранние этапы формирования первых звезд и галактик», — пояснил доктор Кларк.
Работа ученых опубликована в журнале Science.
В галактике NGC 6544 найдены звезды второго поколения. Они похожи на Солнце
Международная группа астрономов провела химическое исследование 23 звезд в шаровом скоплении NGC 6544 в рамках обзора APOGEE. Исследование, опубликованное на сервере предварительной печати arXiv, предоставляет важную информацию о химическом составе этого кластера.
Читайте «Хайтек» в
Шаровые скопления (ШС) представляют собой совокупность тесно связанных звезд, вращающихся вокруг галактик. Астрономы воспринимают их как естественные лаборатории, позволяющие изучать эволюцию звезд и галактик. В частности они помогают исследователям лучше понять историю образования и эволюцию галактик ранних типов. Дело в том, что происхождение ШС, по-видимому, тесно связано с периодами интенсивного звездообразования.
Находящаяся на расстоянии около 8 150 световых лет галактика NGC 6544 представляет собой малоизученный галактический ШС средней плотности. Хотя NGC 6544 расположена относительно близко к Солнцу, о ее внутреннем химическом составе известно очень мало.
Группа астрономов во главе с Фелипе Граном из Папского католического университета Чили в Сантьяго провела спектроскопическое исследование NGC 6544 с высоким разрешением. Анализируя данные эксперимента галактической эволюции APO ( APOGEE ), они отобрали 23 звезды этого скопления, чтобы охарактеризовать химические свойства NGC 6544 и сравнить ее с другими ШС.
Напомним, ветвь красных гигантов (RGB) — стадия эволюции звезд небольшой и средней массы. Эти звезды являются гигантами поздних спектральных классов, поэтому на диаграмме Герцшпрунга — Рассела занимают определенную область, также называемую ветвью красных гигантов. В свою очередь, асимптотическая ветвь гигантов — поздняя стадия эволюции звезд небольшой и средней массы. Звезды на эволюционном этапе асимптотической ветви гигантов имеют низкие температуры и большие размеры и светимости.
Согласно исследованию, 14 из 23 исследованных звезд NGC 6544 демонстрируют различные химические структуры. Это указывает на то, что они являются так называемыми звездами второго поколения. В общем, множественные популяции (MP) внутри ШС относятся в основном к первому (FG) и второму поколению (SG) звезд. Состав звезд SG меняется практически на уровне отдельных скоплений.
Звезды второго поколения возникли из вещества, обогащенного тяжелыми элементами (тяжелее гелия). Эти элементы синтезировались в звездах и были выброшены в межзвездное пространство, в основном при взрывах сверхновых. Кстати, Солнце — звезда второго поколения. При этом звезды первого поколения зародились из первичного вещества, образовавшегося во время Большого взрыва, т. е. практически только из водорода и гелия. Звезды второго поколения возникли из вещества, обогащенного тяжелыми элементами (тяжелее гелия).
Кроме того, исследование показало, что описанные в статье звезды в NGC 6544 демонстрируют значительный разброс по металличности и соотношению алюминия к железу, большему, чем ожидалось. Наконец, проанализировав наборы данных из обзора APOGEE, астрономы отметили, что в скоплении отсутствуют химически пекулярные (СР) звезды.
Поиск древних звёзд первого поколения
Звездная археология: поиск древних звезд
Может прозвучать странно, но поиск первых звезд подобен поиску древних гробниц.
Вселенная сильно изменилась с тех пор, как были «захоронены» первые звезды (звезды первого поколения). Первоначальная среда, в которой они образовались, сейчас заполнена молодыми звездами и их беспорядочными сверхновыми (звездами второго поколения). Это затрудняет поиск древних космических объектов.
Звезды первого поколения (как их называют) были древними «чудовищами» гигантских размеров, в несколько сотен раз превосходившими массу нашего Солнца. Жили они недолго, их продолжительность жизни составляла всего несколько миллионов лет по сравнению с 10 миллиардами лет жизни менее массивных звезд (например, как Солнце). Это эквивалентно тому, как если бы человек состарился и умер всего через три дня после рождения.
Несмотря на такое короткое время жизни, эти звезды больше всего ответственны за изменение Вселенной. Они освещали Вселенную, облучая ее и заполняя металлами, которые затем могли образовывать звезды, планеты и даже нас с вами.
На сегодняшний день астрономы до сих пор не обнаружили ни одной звезды первого поколения. Где же они?
Ограниченность инструментов, а также «засоренность» космического пространства затруднили поиск этих древних артефактов. Но в последние годы были сделаны некоторые многообещающие открытия, указывающие на потомков звезд первого поколения.
Звезды первого поколения
Казалось бы, поиск не должен быть таким сложным. В конце концов, отблеск звездного света трудно не заметить.
Но поиски звезды первого поколения среди миллиардов объектов в Млечном Пути напоминают поиски подлинных древнеегипетских артефактов на какой-нибудь беспорядочной распродаже сувениров.
Для человеческого глаза звезда, родившаяся 13 миллиардов лет назад, выглядит почти так же, как звезда такой же массы, родившаяся 4 миллиарда лет назад.
Но для астрофизиков в первую очередь важно определить содержание металлов в звездах, поскольку первые звезды вообще не содержали металл. Ученые оценивают содержание металлов, измеряя, какой процент звезды составляет определенный металл. Эта оценка делается на основе силы линий поглощения металла в спектре. Затем эта доля сравнивается с таким же количеством металла на Солнце.
Бедная железом звезда состоит из меньшей доли железа, чем Солнце, даже если звезда очень большая и имеет большее количество железа с точки зрения массы. Среди всех металлов именно железо дает самые сильные линии поглощения, которые легче всего измерить с помощью оптических телескопов.
Чем отличаются звезды первого и второго поколения
Как оказалось, железо также является хорошим индикатором общей металличности. Если звезда содержит меньшую долю железа, чем Солнце, ее называют «бедной» металлом, а если большую — «богатой» металлом.
Новые звезды (звезды второго поколения) богаты металлами, потому что они образовались из газа, уже насыщенного металлами от предыдущих сверхновых.
Звезды, которые образуются в наше время, обычно имеют общее содержание металла около 2 % от массы (всего 2 %, а мы называем их «богатыми» металлами!)
Стоит помнить, что водород всегда был и будет главным компонентом звезды. Разница в содержании водорода между древней и «современной» звездой не большая, но все же имеет значение.
Чем старше звезда, тем меньше в ней содержится металла. На самом деле, звездные «археологи» редко заинтересованы в поисках какой-либо звезды, если она не содержит менее 1/10 000 доли железа (по сравнению с Солнцем). Такие объекты называют звездами с ультра-бедным содержанием металлов.
Астрономы находят звезды
По состоянию на середину 2020 года было зафиксировано лишь несколько звезд с содержанием железа ниже 1/10 000.
Технические ограничения телескопов или помехи от других звезд привносят очень правдоподобные «подделки» в спектральные линии. Поэтому анализ, который проводят ученые с целью понять и удалить эту погрешность, является жизненно важной работой.
Звезда SMSS J1605-1443
Текущий рекордсмен по самому низкому содержанию железа — это звезда SMSS J1605-1443. Обнаруженная в 2018 году, эта мега-звезда с гало, бедная металлами, содержит менее 1/1000000 доли от «солнечного» железа.
Это очень мало, а значит, это и есть искомая звезда первого поколения? К сожалению, нет.
Уровни других тяжелых металлов, присутствующих в спектре, слишком высоки. Она просто не могла создать их все сама — ей должна была «помочь» предыдущая сверхновая. Это все равно что почти идеально подделать египетскую мумию, но оставить на запястье умные часы.
Уровни железа, обнаруженные в SMSS J1605-1443, были низкими, но они определенно были.
Звезда SM0313-6708
Однако есть одна звезда, на которой вообще не было обнаружено железа — SM0313-6708, зафиксированная в 2012 году.
Спектроскопия высокого разрешения SM0313-6708 в 2013 году не показала … ничего особенного. Вместо леса линий поглощения у этой звезды почти не было активности и присутствовали только четыре металла: литий, углерод, магний и кальций.
Везде, где должен был быть провал, связанный с наличием железа, была просто жирная линия, указывающая на отсутствие железа. Можно сказать совершенно точно, что это звезда, бедная железом, — по крайней мере 1/10 000 000 от «солнечного» железа.
Это звучит многообещающе. Была обнаружена звезда, в которой, похоже, полностью отсутствует железо. Получается, это звезда первого поколения? К сожалению, это еще одно «нет».
Были обнаружены только четыре металлических элемента, но все же их количества были слишком большими. Их нельзя было получить исключительно путем ядерного синтеза в пределах первой звезды. Однако это было мучительно близко.
Уровни металлов, обнаруженные в SM0313-6708, настолько низкие, что они могли образоваться из облака, обогащенного всего лишь одной сверхновой! Итак, то, что мы здесь видим, не является звездой первого поколения, но вполне может быть первым потомком!
Сейчас эта звезда SM0313-6708 считается самой древней звездой во Вселенной.
Поиски звезды первого поколения
Есть реальная надежда, что однажды мы «откопаем» уцелевшую первую звезду. Средняя звезда первого поколения, как полагают, была в десятки или сотни раз больше массы Солнца.
Но моделирование показывает, что в то же время образовался «хвост» из маломассивных звезд. Чем массивнее звезда, тем короче ее жизнь, поэтому только звезды, масса которых составляет 80% массы Солнца или меньше, могут существовать сегодня.
Обнаружить их непросто, но есть версия, что гало галактики — хорошее место для их поиска, потому что там меньше «засорение» более молодыми звездами.
Прогресс в звездной «археологии» был значительным: ученые отыскали металличность до 1/10 000000 содержания железа, достигнув точки, при которой вообще не обнаруживается железо.
По мере того, как ученые разрабатывают технологию для выбора наиболее многообещающих звезд-кандидатов среди миллиардов вариантов, есть надежда, что будет увеличен размер выборки звезд с низким содержанием металлов.
Но не стоит ожидать слишком многого. Если сегодня и существует популяция звезд с малой массой, она, вероятно, будет «засорена», скрыта от глаз, и остается открытым вопрос о том, позволит ли технология обойти все это.
Хоть и не удалось обнаружить ту самую первую звезду, которая вообще не содержала металлов, но зато было обнаружено то, что ученые считают первым «потомком». Это звезда, соединяющая популяции звезд без металлов и звезд с низким содержанием металлов. Это не неудача. Будущее звездной «археологии» еще далеко от завершения!
Чем отличаются звезды первого и второго поколения
ЗВЕЗДЫ ПЕРВОГО ПОКОЛЕНИЯ
Вселенная началась Большим взрывом приблизительно 15 млрд. лет назад. В этот момент она имела ничтожно малый размер и непостижимо высокую температуру.
Очень быстро она расширилась и остыла. Первоначальный ее состав — фотоны (радиация) и кварки плюс электроны и нейтрино, но очень скоро последовали тяжелые субатомные частицы — протоны и нейтроны. По мере дальнейшего расширения и остывания Вселенной из протонов и нейтронов возникли такие ядра, как водород-2, гелий-3 и гелий-4, но ничего больше. Через несколько минут этот процесс был закончен, и за это время во Вселенной был создан огромный запас ядер водорода и гелия.
Дальнейшее расширение и охлаждение в течение, может быть, 700 000 лет привело к падению температуры до точки, когда отрицательно заряженные электроны могли расположиться вблизи положительно заряженных протонов и более сложных ядер, удерживаясь на месте электромагнитными силами.
Так образовались атомы водорода и гелия. Атомы гелия остаются одиночками при любых обстоятельствах; если при достаточно высокой температуре сталкиваются два атома водорода, они остаются вместе, образуя двухатомное соединение, называемое молекулой водорода.
Одновременно с продолжавшимся расширением и охлаждением Вселенной расширялись во всех направлениях и водород с гелием. Поэтому мы можем предположить, что Вселенная состояла из однородного облака этих смешанных газов, которые становились все более разреженными, заполняя собой все увеличивающийся объем пространства по мере расширения Вселенной.
Однако по какой-то причине это облако не сохранило одинаковой плотности и не осталось однородным. Может быть, в результате беспорядочных флюктуаций и вызванных ими завихрений атомы двигались так, что возникли медленно кружащиеся зоны с большей плотностью, перемежающиеся зонами с меньшей плотностью. Если бы атомы продолжали двигаться произвольно, то с течением времени общая картина бы выровнялась. Области высокой плотности потеряли бы часть атомов для областей низкой плотности, т. е. имелась бы постоянная тенденция к восстановлению однородности. Конечно, хаотическое движение, или турбулентность, продолжало бы создавать области высокой плотности, но эти очаги бесконечно перемещались бы в пространстве (подобно областям высокого и низкого давления в нашей собственной атмосфере).
Но, однажды образовавшись, область высокого давления может оказаться и постоянной. Интенсивность гравитационного поля в такой области растет по мере увеличения ее плотности. Гравитационное поле, становясь все сильнее, преодолевает стремление беспорядочно движущихся атомов к разбеганию. Область высокой плотности могла, по-видимому, иметь настолько мощное гравитационное поле, что захватывала атомы из областей менее плотных, поэтому области высокой плотности становились еще плотнее, а области низкой плотности еще разреженнее.
Итак, однородная первоначально смесь водорода и гелия с течением времени сгустилась в огромные облака газа, отделенные друг от друга почти полным вакуумом. Эти огромные по массе и объему газовые облака, которые связываются в нашем представлении с целыми галактиками или со скоплением галактик, мы могли бы назвать протогалактиками. Внутри протогалактик развивалась дальнейшая неуравновешенность массы, связанная с хаотическим движением атомов. В конце концов протогалактики разбились на миллиарды меньших облаков, между которыми пролегло практически пустое пространство. Подобно тому как протогалактики вращаются относительно друг друга, входящие в них мелкие облака тоже вращаются относительно друг друга. (Примечательно, что вращение происходит в разных направлениях и если все эти вращения сложить, то общее вращение для всей Вселенной оказалось бы равным нулю.)
Каждое газовое облако имеет собственное гравитационное поле. Очень плотное газовое облако должно иметь гравитационное поле достаточно сильное, чтобы заставить облако начать сжиматься. Если газовое облако начинает сжиматься, то его плотность увеличится; вместе с тем увеличится и интенсивность собственного гравитационного поля. Соответственно увеличится и сила воздействия, оказываемая этим усиливающимся полем на сжатие. Другими словами, начав сжиматься, газовое облако продолжает сжиматься все быстрее и быстрее.
Звезды возникали во всех протогалактиках, и, когда Вселенной было около миллиарда лет, протогалактики газовых облаков стали галактиками сияющих звезд. Одна из них — наша Галактика.
Сложившиеся галактики состояли исключительно из водорода и гелия (в основном из водорода). Образовавшиеся в них звезды, также имеющие водородно-гелиевое строение, назвали «звездами первого поколения».
Если бы все газовые облака конденсировались в звезды первого поколения, то это бы означало, что процесс эволюции кончился раз и навсегда. Ведь звезды первого поколения относительно малы и спокойны и могут оставаться в главной последовательности 14 млрд. лет (т. е. они существуют еще и поныне). Их возможный коллапс пройдет довольно спокойно, и они перейдут в разряд белых карликов.
Есть галактики, которые содержат очень мало газопылевых облаков и в которых практически все звезды — звезды первого поколения. В этих галактиках распределение газовых облаков в протогалактический период было, по-видимому, весьма равномерным, а сами облака были относительно равновелики.
ЗВЕЗДЫ ВТОРОГО ПОКОЛЕНИЯ
В отдельных галактиках, включая и нашу собственную, газовые облака по какой-то причине могли быть неодинаковы в размерах. Крупные сгущались быстрее, так как они обладали более сильным гравитационным полем. Из этих более крупных облаков и выходили массивные звезды, недолговечные и взрывающиеся как сверхновые.
Сверхновые в астрономическом масштабе времени возникали почти мгновенно и извергали материю в космос уже тогда, когда многие газовые облака еще оставались облаками и только собирались сгуститься в звезды.
Материя раскаленной сверхновой, смешиваясь с газовыми облаками, подогревала их. Чем горячее становилось облако, тем быстрее было хаотическое движение атомов и, следовательно, тем сильнее их стремление вырваться и рассеяться. Остывающее облако, только-только начавшее сгущаться под влиянием собственного тяготения, нагреваемое таким образом, начинало вновь расширяться. Его гравитационное поле росло менее интенсивно и время, когда могло начаться сгущение, могло отсрочиться надолго, даже навсегда.
Эти ранние сверхновые выполняли две функции. Во-первых, они поддерживали существование газовых облаков и предохраняли их от конденсации, так что даже теперь во многих галактиках встречаются такие облака. Во-вторых, они рассеивали в газовых облаках тяжелые ядра, т. е. ядра тяжелее, чем гелий. Эти тяжелые ядра могли соединяться с водородом и друг с другом, образуя пылевые частицы, так что газовые облака теперь уже состояли из газа и пыли.
Так, в некоторых галактиках, в теперешнем их виде, в форме облаков газа пребывает не более 2 % общей массы; в других, где «поработали» сверхновые, на долю газопылевых облаков приходится до 25 %.
В галактиках, богатых межзвездными облаками, сами облака распределены неравномерно. К таким галактикам обычно относятся спиральные, в ветвях которых и сосредоточены облака, в основном газопылевые. Наше Солнце, к слову сказать, находится в одной из спиральных ветвей Галактики; по некоторым оценкам, около половины массы этих спиральных ветвей пребывает в виде межзвездных газопылевых облаков.
Окраина Галактики, где мы живем, настолько «запылена», что мы испытываем серьезные трудности, желая осмотреть строение Галактики. В плоскости Млечного Пути, где в основном сосредоточились облака, кроме ближайших звезд, мы ничего не видим —# все остальное закрыто облаками! Мы не можем видеть центр Галактики посредством обычного света и должны довольствоваться любой ее частью, но только не ядром!
Только благодаря тому, что мы научились владеть радиоволнами, легко минующими эти облака, да еще потому, что центр Галактики — область высокой активности, излучающая радиоволны, мы хоть что-то знаем об этом районе.
Межзвездные облака, существующие ныне в Галактике, в течение 14 млрд. лет подвергались воздействию взрывов миллионов сверхновых, поэтому они изрядно перемешаны и обогащены привнесенным в них материалом. Около 1 % содержащихся в этих облаках атомов (или 3 % массы) составляют тяжелые атомы, кроме гелия, существующие только как часть тяжелых атомных выбросов, запущенных в межзвездное пространство чудовищной силой извержения сверхновой.
Время от времени одно из этих обогащенных тяжелыми атомами газопылевых облаков — пусть в нашей или в другой галактике — начинает претерпевать сжатие и образует новую звезду, или несколько звезд, или даже целое скопление. Звезды, образующиеся из межзвездных облаков с ощутимым содержанием тяжелых атомов, — это «звезды второго поколения»; их структуры в небольшой, но измеримой степени построены из материала, который возник внутри более ранних звезд, ныне мертвых и исчезнувших или по крайней мере не существующих больше в главной последовательности.
Наше Солнце — звезда второго поколения, образовавшаяся 4,6 млрд. лет назад; к тому времени Галактика существовала уже около 10 млрд. лет. Солнце образовалось из облака, которое на протяжении всех этих миллиардов лет подвергалось насыщению осколками взрывов сверхновых и поэтому включало значительное количество тяжелых ядер уже с самого рождения, хотя по своей структуре оно было тогда почти полностью водородно-гелиевым.
Если звезда, подобная Солнцу, могла образоваться спустя 10 млрд. лет после Большого взрыва, значит, есть звезды, которые могли образоваться и позднее. (И это несомненно, сегодня, сейчас на главной последовательности есть звезды, которые по массе могут там оставаться лишь несколько миллионов лет; отсюда вывод: они должны были возникнуть не ранее нескольких миллионов лет назад). Короче говоря, должны существовать звезды, которые образуются и в настоящий момент в нашей Галактике, и даже на окраине нашей Галактики. Мы, пожалуй, можем когда-нибудь увидеть свидетельства их образования.
К примеру, туманность Ориона: это газопылевое облако общей массой, вероятно, в 300 раз больше массы Солнца имеет звезды, иначе бы облако не светилось. Звезды спрятаны в облаках окружающих их пыли и газа точно так же, как нить накаливания скрыта стеклом матовой лампы: нить заставляет светиться матовое стекло, но она сама в деталях остается невидимой.
Есть свидетельства тому, что звезды эти очень массивны и потому должны быть совсем молодыми. Несомненно, они произошли из этого облака и должны быть еще другие, образующиеся из него сейчас.
Когда происходит образование такой звезды, части облака сгущаются, уплотняются и мутнеют. Свет от звезд внутри облака через такие уплотненные зоны проходит с трудом. Очевидно, между нами и внутренними звездами туманности Ориона имеются части туманности в виде маленьких, темных, более или менее округлых зон. На такие округлые темные места в туманности Ориона в 1947 г. указал голландско-американский астроном Барт Бок (1907–1983). Они стали известны как «глобулы Бока», и вполне возможно (хотя и не наверное), они представляют собой звезды в процессе образования.
Можно спросить: что заставляет межзвездные облака сгущаться в звезды, если они просуществовали как облака миллиарды лет, не имея ни малейшей склонности к сгущению? Вероятно, к более плотному состоянию частиц пыли внутри облаков приводят их хаотические движения, которые усиливают гравитационное поле, что и дает начало процессу; откровенно говоря, это очень маловероятно, а если и вероятно, то несколько миллиардов лет назад.
В сущности, хаотическое движение могло бы постепенно рассеять облако и разредить его до почти вакуумного состояния межзвездного пространства. Ведь межзвездное пространство в конечном счете очень разреженная система газа и мельчайшей пыли. Она может представлять собой отчасти материал, никогда не использованный при образовании звезд и межзвездных облаков, отчасти материал, который из самих этих облаков был рассеян.
Существование такого межзвездного вещества впервые было доказано немецким астрономом Иоганном Хартманом (1865–1936) в 1904 г. Изучая спектр отдельной звезды, он обнаружил, что линии ее спектра имели смещение (этого и следовало ожидать, поскольку звезда удалялась). Хартмана поразило то, что некоторые линии, именно линии, представлявшие элемент кальций, не смещались. По крайней мере, кальций оставался в покое и поэтому никак не мог принадлежать звезде. Так как между нами и звездой не было ничего, кроме «пустого» пространства, кальций следовало отнести именно к этому пространству, которое в общем и целом оказывалось не таким уж пустым.
Кальций присутствовал в пространстве в чрезвычайно разреженном состоянии, но по мере того, как свет проделывал свой миллиарднолетний [4] путь от звезды к нам, он время от времени сталкивался с одним из атомов кальция, при этом всякий раз поглощался фотон света. В итоге исчезновение множества фотонов отмечается теперь заметной темной линией.
В 1930 г. швейцарско-американский астроном Роберт Трамплер (1866–1956) показал, что в космосе присутствует достаточно межзвездной пыли (какой бы редкой она ни была!), чтобы затуманить отдаленные объекты.
Итак, мы можем заключить, что ныне существующие и миллиарды лет сохраняющие свою природу межзвездные газовые облака (например, облако, давшее начало нашему Солнцу, или облака, существующие сегодня) пребывают в состоянии хрупкого равновесия. Они недостаточно плотны или холодны, чтобы начать процесс сгущения, и недостаточно разреженны или горячи, чтобы раствориться в межзвездном газе. Чтобы из такого газового облака зародилась звезда, должно произойти, хоть ненадолго, нарушение упомянутого равновесия. Что же может послужить толчком?
Астрономы выдвинули несколько возможностей. В туманности Ориона, например, живущие там ныне крупные молодые горячие звезды посылают мощный звездный ветер, в сравнении с которым наш солнечный ветер — легкий ветерок. Устремляясь сквозь окрестную туманность, они гонят перед собой пыль и газ, сжимая их до плотности гораздо большей чем существует вокруг. Это, в свою очередь, усиливает гравитационное поле в этой части облака и вызывает процесс конденсации, который еще больше сжимает пыль и газ, опять же усиливая гравитацию, и т. д. Образуется глобула Бока и в конце концов звезда.
Но как же возникли те горячие молодые звезды? В частности, как возникла первая звезда в туманности Ориона, до того как там возникли звездные ветры, проходящие сквозь туманность и вызывающие процесс сжатия?
Тут может быть несколько возможностей.
Межзвездные облака, как и сами звезды, пребывают в постоянном движении вокруг центральных районов галактики, содержащих основную ее массу. Межзвездное облако может когда-нибудь оказаться рядом с горячим огромным солнцем, и солнечный ветер даст первую волну сжатия — толчок к образованию звезды.
Или, например, два межзвездных облака могут столкнуться и слегка надавить друг на друга. Они могут даже частично слиться, образовав в том месте, где произошло их наложение, зону повышенной плотности. Гравитационное поле, где облака легли «внахлест», будет усилено, и начнется сгущение.
Может статься, что межзвездное облако будет проходить очень далеко от ближайших звезд и его температура несколько упадет. Атомы и частицы, составляющие его, замедлят свое движение и потянутся друг к другу; облако станет плотнее, и начнется процесс сгущения.
Однако эти возможности являются настолько слабыми «возбудителями», что при таких условиях вообще маловероятно образование звезды. Нет ли тут другого, более мощного «запала»?
Есть! Если сверхновая взорвется в относительной близости от нашего облака, то волна вещества, вырвавшегося в результате взрыва, врежется в облако наподобие ударной волны.
Это будет грандиозным событием, превосходящим все, что может произойти вблизи обычной звезды или при столкновении двух облаков. Следствием такого взрыва будет мощнейшее сжатие облака и начало процесса звездообразования.
Итак, можем ли мы полагать (очевидных доказательств у нас нет, есть только возможность полагать), что примерно 4,6 млрд. лет назад на расстоянии всего нескольких световых лет от межзвездного облака, остававшегося в равновесии 10 млрд. лет, взорвалась сверхновая?
Если это так, мы должны испытывать к сверхновым чувство тройной благодарности.
Во-первых, сверхновые посредством ионов заполнили космос тяжелыми элементами, которым иначе никак бы не возникнуть, — элементами, необходимейшими для нашего мира и для нас самих, без которых не было бы и нас (как не было бы, вероятно, и никакой жизни во Вселенной!).
Во-вторых, энергия взрыва сверхновой удержала многие межзвездные облака (включая и то, что дало жизнь нашему Солнцу) от преждевременного сгущения (до того, как они стали достаточно насыщены тяжелыми элементами).
Мы видели, как звезда (или две звезды, или скопление звезд) может развиться благодаря простому сжатию первоначально рассеянного межзвездного облака.
Но как отдельная звезда, подобная нашему Солнцу, оказывается окруженной планетами— телами слишком миниатюрными, чтобы превратиться в звезду?
В объяснение выдвигалось два рода теорий: 1) катастрофа и 2) эволюция. В теориях катастрофы звезды образуются как таковые в единственном числе или со звездой-компаньоном без какого-либо планетного окружения. Каждая звезда может прожить (как правило, так и бывает) всю жизнь в главной последовательности, потом она раздуется в красный гигант и наконец коллапсирует. И все это время она существует без планет. Однако может произойти чрезвычайное событие: другая звезда может приблизиться и пройти рядом. Огромная сила тяготения, возникшая между ними, вырвет у обеих часть вещества, которое и разовьется в семейство планет, возможно, вокруг каждой из них. Может случиться, что одна из звезд парной системы взорвется как сверхновая с такой силой, что от нее останутся лишь обломки, которые будут захвачены звездой-компаньоном и станут планетами. В обоих случаях (как и в других возможных) планеты моложе, много моложе звезд, вокруг которых они кружат.
Подобные катастрофы, должно быть, чрезвычайно редки, и если теории катастроф верны, то планеты в самом деле представляют собой феномен необыкновенный. Таких планетных систем, как наша Солнечная, может быть, горстка на всю Галактику.
Согласно эволюционным теориям, звезды и планеты образовались в результате одного и того же процесса и, следовательно, их возраст одинаков. Например, все члены нашей Солнечной системы — от Солнца в ее центре до самых отдаленных комет — возникли одновременно, т. е. они ровесники. Кроме того, из этих теорий вытекает, что большинство звезд, если не все, имеет планетные системы.
Какой же из этих двух групп теорий отдать предпочтение?
Трудно сказать. В данном случае невозможно сделать вывод на основе реальных наблюдений. До сих пор нам не удавалось изучать образование звезд с достаточно близкого расстояния, чтобы судить, образуются ли при этом планеты, и если да, то каким образом. Не можем мы и достаточно четко установить, часто ли встречаются планетные системы (свидетельство об эволюционном происхождении) или очень редко (свидетельство о катастрофе).
Об этом можно только спорить.
Что касается самих теорий, то оказалось, что и теории катастроф, и эволюционные теории (в том виде, как они существовали до 40-х годов) имели крупные недостатки.
И недостатки эти были столь серьезны, что здравомыслящие астрономы были вынуждены отвергнуть и ту и другую группу теорий. И то сказать, все выдвигавшиеся теории имели такие изъяны, что единственный вывод, к которому, веря им, можно было прийти относительно Солнечной системы, это то, что ее не существует.
Но в 40-х годах новые версии эволюционной теории как-то подправили худшие ее стороны и удовлетворительный сценарий возникновения Солнечной системы был составлен.
Итак, сосредоточимся на эволюционном варианте, первые версии которого, как мы помним, были выдвинуты Кантом и Лапласом во второй половине 1700-х годов в виде гипотезы туманности.
Гипотеза туманности включает одно свойство, называемое «угловым моментом». Межзвездное облако, сгустившееся в Солнце, первоначально вращалось очень медленно, и угловой момент был мерой количества этого вращения. Это количество зависит как от скорости вращения, так и от среднего удаления всех частей объекта от оси вращения.
Согласно известному закону физики, общее количество углового момента в замкнутой системе (системе, ни с чем вне себя не взаимодействующей) должно оставаться постоянным.
По мере сгущения межзвездного облака среднее удаление всех его частей от оси вращения все время сокращалось.
Чтобы компенсировать это сокращение и поддерживать общий угловой момент на одном уровне, скорость вращения должна постоянно увеличиваться.
Скорость вращения сгущавшегося облака увеличивалась, нараставшая центробежная сила наибольшей была на экваторе; облако, бывшее изначально шаровидным, все более и более уплощалось, становясь похожим на блин. Наконец экваториальный выступ стал выдаваться настолько, что от него оторвалось кольцо вещества. Это кольцо вещества сгустилось в планету. Облако стало меньше, но продолжало вращаться еще быстрее, пока от него не отделилось новое кольцо вещества. И так до тех пор, пока не образовались все планеты. Кольца вещества, сгущаясь, тоже вращались с возрастающей скоростью и отбрасывали свои более мелкие кольца, которые становились спутниками.
Гипотеза туманности, выглядевшая весьма разумно, была популярной в течение почти всего XIX в. Хотя, честно говоря, трудно понять, почему кольцо вещества должно было сгуститься именно в планету, а не в пояс астероидов или просто рассеяться в космосе? Более того, планеты Солнечной системы заключают в себе 98 % всего углового момента системы, тогда как само Солнце только 2 %. Астрономы не могли убедительно объяснить то, как всю эту уйму углового момента втиснуть в маленькие кольца вещества, отделившегося от сгущающегося облака.
В результате гипотеза туманности была сильно скомпрометирована и в последующие 50 лет наибольшее признание получили теории катастроф (с их собственными нерешенными проблемами).
В 1944 г. немецкий астроном Карл Вейцзеккер (р. 1912) создал модификацию гипотезы туманности. Он предположил, что облако вращается не плавно, как цельное тело, а турбулентно, образуя ряд завихрений. По мере того как облако уплотнялось, все более и более напоминая хлебную булку, эти вихри становились все крупнее, и, чем были крупнее, тем дальше они располагались от центра. Когда соседние вихри входили в соприкосновение, материя одного сталкивалась с материей другого и отдельные сгустки вещества стремились соединиться. Постепенно накапливаясь в местах соединений, эти сгустки становились все крупнее, и в конце концов из них сформировались планеты, при этом каждая последующая оказалась от Солнца в два раза дальше, чем предыдущая. Теория Вейцзеккера легко объясняла формирование планет, устранив главную трудность — превращение планет из газовых колец. А как обстояло дело со столь прихотливым распределением углового момента в Солнечной системе?
Здесь теорию Вейцзеккера быстро подправили, призвав на помощь электромагнитное поле Солнца и те изменения, которые испытывало это поле в связи с уплотнением.
Теперь можно понять переход углового момента от массивного Солнца в центре системы к маленьким планетам на периферии. Астрономы уверены, что заполучили теперь массу ценнейших деталей, связанных с формированием планетных систем.
Но отчего все-таки планеты такие разные по размеру и своим свойствам?
Будь Солнце звездой первого поколения, состоящей целиком из водорода и гелия, планеты выглядели бы почти близнецами. Облако-прародитель имело бы исключительно водородно-гелиевый состав, а значит, и планеты должны иметь такой же состав, как и Солнце.
(Гелий и водород — первый в виде отдельных атомов, второй — двухатомных молекул — в дальнейшем не соединяются и остаются газами вплоть до очень низких температур.
Единственное, что могло бы удержать их вместе, — это силы гравитации).
Вообразим себе сгущающееся водородно-гелиевое облако. Это — постоянное противоборство (сродни перетягиванию каната) между силами гравитации, которые стремятся удержать массу, и свободным хаотическим движением атомов и молекул, стремящихся высвободить эту массу и рассеять ее в пространстве. Чем больше масса сгущающегося вещества и чем она плотнее, тем сильнее гравитация и тем туже в ее обручах стягивается тело. Чем холоднее масса, тем медленнее произвольное движение атомов и молекул и меньше их тенденция к рассеиванию, тем туже опять-таки будет стягиваться небесное тело.
Планеты, построенные из гораздо меньших водородно-гелиевых масс, испытывали при образовании гораздо большие трудности.
Представим себе планеты, складывающиеся на различных расстояниях от развивающегося Солнца, одни очень близко, другие далеко. Все они растут очень медленно, их гравитационного поля едва хватает для перекрытия силы рассеивания. Но когда планеты укрупнились, их постоянно растущая гравитация начинает легко подавлять тенденцию к рассеиванию, планета начинает расти все быстрее и быстрее (как снежный ком).
Тем не менее планеты стали достаточно крупными телами, чтобы удержать свою структуру, несмотря на то что высокие температуры в их глубинах способствуют увеличению сил рассеивания. К счастью для планет, их вещество плохо проводит тепло, поэтому, хотя они довольно горячи в центре, поверхность их остается холодной, а ведь именно на поверхности беспрепятственное рассеивание могло бы обернуться наибольшим ущербом.
Вероятно, планеты в основном уже завершили свое формирование, когда сгущающееся Солнце достигло температуры ядерной реакции и вспыхнуло.
Когда это произошло, началось воздействие двух новых факторов:
1) Солнце начало излучать радиацию, которая нагревала поверхность вновь образованных планет;
2) Солнце во всех направлениях посылало солнечный ветер.
Нагревание поверхности планет усиливало стремление к рассеиванию, проявлявшемуся на поверхности наиболее сильно; облака водорода и гелия поднялись над планетами. Солнечный ветер уносил их прочь.
Естественно, эти два эффекта были особенно ощутимы вблизи Солнца, менее ощутимы с увеличением расстояния.
Планеты, возникшие рядом с Солнцем, испытывали наибольшую тенденцию к испарению и подвергались сильнейшему «выдуву» массы солнечным ветром. Поэтому соседствующие с Солнцем планеты сильно потеряли в своей массе. По мере того как они «худели», их гравитационные поля теряли свою интенсивность, зато набирали силу и ускорялись испарение и выдувание. В конце концов ближайшие к Солнцу планеты полностью растаяли.
На большем удалении от светила нагрев и выдув слабели, и планеты, обладавшие относительно крупной массой, выжили. Спутники этих планет, если они были, могли не выжить из-за чрезмерной слабости их гравитационного поля.
Итак, если Солнце было бы звездой первого поколения, оно имело бы несколько планет, по удаленности и общему химическому составу аналогичных таким газовым гигантам, как Юпитер, Сатурн, Уран, Нептун, и ничего более.
Не было бы планет, на которых могли бы существовать люди, как не было бы и материи, из которой образовались бы живые ткани. Планеты, кружащие вокруг звезды первого поколения, были бы, как мы знаем, абсолютно мертвы.
Солнце — звезда второго поколения благодаря существованию сверхновых. Это значит, что межзвездное облако, из которого оно вышло, состояло из четырех групп веществ.
Во-первых, это водород с гелием, составлявшие 97 % массы первоначального облака (хотя это облако второго поколения).
В-третьих, это еще более тяжелые элементы: алюминий, магний, кремний, железо и никель. Первые три из них (вместе с другими, менее распространенными элементами), соединяясь с кислородом, образуют силикаты. Силикатами «вымощены» каменистые части Земли.
В-четвертых, это атомы железа и никеля, которые также могут участвовать в образовании силикатов, но часто они достаточно обильны, чтобы соединяться в относительно чистом виде с меньшими количествами других веществ. Это — металлы.
На первый взгляд может показаться, что из первоначального облака, состоящего на 97 % из водорода и гелия и незначительного количества тяжелых элементов, вряд ли можно «вылепить» такую планету, как Земля.
Напрасно мы связались со звездой второго поколения, лучше иметь дело со звездой первого поколения. Однако общая масса Солнечной системы в 343 600 раз больше массы Земли, и если даже 3 % этой общей массы — тяжелые элементы, то их хватит на 10 000 таких планет, как Земля, и еще останется.
Конечно, свыше 99 % тяжелых элементов заключено в Солнце, но вся, вместе взятая, материя планет, обращающаяся вокруг Солнца, — это 448 масс Земли. И если хотя бы 3 % из этой общей массы — тяжелые элементы, то все-таки имеющихся тяжелых элементов достаточно, чтобы построить более тринадцати планет размером с Землю.
Другими словами, в строительном материале нет дефицита, и планета типа нашей Земли вполне может образоваться возле звезды второго поколения, подобной Солнцу.
При образовании планет (при звезде второго поколения) камень и металл сращиваются первыми. Молекулы силикатов и атомы металла плотно соединяются друг с другом благодаря электромагнитным силам, существующим между их электронами. Удерживаясь вместе, они не зависят от гравитации. В небольших массах они нерасторжимы даже при очень высоких температурах (порядка двух-трех тысяч градусов).
По этой причине каждая планета имеет, по-видимому, каменно-металлическое ядро. Сначала металл и камень находятся в перемешанном состоянии, но по мере роста планеты и нагревания ее сердцевины им становится легче отделиться друг от друга, особенно металлу: с повышением температуры наступает плавление. Естественно, каменные породы имеют более высокую точку плавления, чем металлы; хотя камень может и не плавиться, но в раскаленном состоянии он становится относительно мягким.
Металл, — как более тяжелый, медленно перетекает вниз и, следовательно, собирается в центре планеты, а скальные вещества служат металлу своего рода футляром.
Таким образом, в Земле существует металлическое ядро в оболочке из камня. То же самое — на Меркурии и Венере. На Марсе и Луне по причине, которую мы еще не можем объяснить, металла относительно мало. Присутствующий там металл перемешан с силикатами, так что эти две планеты насквозь каменистые.
После образования ядра из металла и камня развивающимся планетам благодаря гравитационному полю уже гораздо легче собрать вокруг себя пояс льдов, а поверх льдов — пояс водорода с гелием. Судя по всему, планеты развиваются быстрее при звездах второго, а не первого поколения.
Что происходит, когда в последующем загорается Солнце? Поверхность планет, расположенных ближе к Солнцу, нагревается и противостоит обдуванию солнечным ветром. Весь водород с гелием, накопленный близкими к Солнцу планетами, вместе со всеми льдами (или подавляющей их частью) испаряется и уносится в пространство. Металлокаменные ядра планет, напротив, уплотняются еще сильнее, несмотря на воздействие жары и солнечного ветра.
Меркурий становится таким горячим, а Луна такой маленькой, что с их поверхности все уносится подчистую. То же самое происходит и с астероидами (они к моменту зажигания Солнца были, наверное, меньше числом и гораздо крупнее). Венера и Земля будучи достаточно большими, а Марс достаточно удаленным от Солнца, удержали некоторую часть льдов, находящихся вероятно, в свободном соединении с силикатами. Они также сохранили вещества, которые теперь составляют их атмосферу.
Земле выпало быть крупнее Марса и прохладнее Венеры, поэтому она сохранила достаточно воды, чтобы превратить ее в свои океаны.
За поясом астероидов планеты не подверглись ощутимому влиянию солнечного ветра и излучения, они сохранили большую часть накопленных ими льдов и водородно-гелиевой оболочки. Так получились Юпитер, Сатурн, Уран и Нептун. Если не считать в них ничтожных количеств тяжелых элементов, эти планеты точно такие, какими они могли быть, если бы возникли и обращались вокруг звезды первого поколения.
В безопасности и прохладе далекой окраины Солнечной системы смогли образоваться более мелкие тела. Некоторые из них сплошь каменисты, как Ио, самый близкий спутник Юпитера. Другие — сплошь ледяные, как Ганимед и Каллисто, два других его спутника. Далее Титан, спутник Сатурна, и очень отдаленные тела — Плутон и кометы. Некоторые из них состоят одновременно из камня и льда, как, например, Европа, четвертый спутник Юпитера.
Во всяком случае, Земля образовалась в том месте и с таким химическим составом, что стало возможным зарождение жизни, — жизни, которая была бы попросту невозможна, если бы не существование сверхновых,
Примечания:
Для процесса поглощения света звезд важен путь внутри Галактики. А это лишь тысячи, десятки тысяч световых лет. — Примеч. ред.