чем отличается генератор переменного тока генератора постоянного тока
Как устроены генераторы постоянного и переменного тока
Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.
При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:
Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.
По виду вырабатываемой электроэнергии генераторы бывают:
1. постоянного тока;
Принцип работы простейшего генератора
Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.
В конструкции любого генератора реализуется принцип электромагнитной индукции, когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается постоянными магнитами в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.
При вращении рамки изменяется величина магнитного потока.
Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.
Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.
За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.
Принцип работы простейшего генератора постоянного тока
При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.
Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.
Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:
у нее используют не один виток, а несколько — в зависимости от величины запланированного напряжения;
число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.
У генератора постоянного тока обмотки ротора располагают в пазах магнитопровода. Это позволяет сокращать потери наводимого электромагнитного поля.
Конструктивные особенности генераторов постоянного тока
Основными элементами устройства являются:
внешняя силовая рама;
коммутационный узел со щётками.
Корпус изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.
Полюса магнитов крепят к корпусу шпильками или болтами. На них монтируют обмотку.
Ротор имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.
Коммутационный узел со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.
Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.
Основные типы конструкций генераторов постоянного тока
По типу питания обмотки возбуждения различают устройства:
1. с самовозбуждением;
2. работающие на основе независимого включения.
Первые изделия могут:
использовать постоянные магниты;
или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…
Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:
шунтами или параллельным возбуждением.
Один из вариантов подобного подключения показан на схеме.
Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.
Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.
Процесс образования якорной реакции
Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.
Способами ее снижения являются:
компенсации магнитных полей за счет подключения дополнительных полюсов;
настройка сдвига положения коллекторных щеток.
Преимущества генераторов постоянного тока
отсутствие потерь на гистерезис и образование вихревых токов;
работа в экстремальных условиях;
пониженный вес и маленькие габариты.
Принцип работы простейшего генератора переменного тока
Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:
коллекторный узел со щетками для отвода тока.
Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.
За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.
Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.
Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:
коллекторного узла вращающегося ротора;
конфигурации обмоток на роторе.
Конструктивные особенности промышленных генераторов переменного тока
Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.
Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.
Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.
В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.
Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.
Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.
Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.
Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.
На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.
Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.
При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.
Особенности синхронных генераторов
Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.
В статоре вмонтирована трехфазная обмотка, а на роторе — электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.
Ротор приводится во вращение от источника механической энергии — приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.
В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.
При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.
Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.
Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.
Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.
Схемы возбуждения синхронных генераторов
Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:
1. контактном методе;
2. бесконтактном способе.
В первом случае используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».
Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.
При бесконтактном способе отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».
Разновидностями бесконтактной схемы являются:
1. система самовозбуждения от собственной обмотки статора;
2. автоматизированная схема.
При первом методе напряжение от обмоток статора поступает на понижающий трансформатор, а затем — полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.
У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.
Автоматическая схема создания самовозбуждения включает использование:
трансформатора напряжения ТН;
автоматизированного регулятора возбуждения АВР;
трансформатора тока ТТ;
выпрямительного трансформатора ВТ;
тиристорного преобразователя ТП;
Особенности асинхронных генераторов
Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.
При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.
Конструкцию ротора у асинхронных генераторов изготавливают:
Асинхронные генераторы могут иметь:
1. независимое возбуждение;
В первом случае используется внешний источник переменного напряжения, а во втором — полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.
Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Чем отличается генератор переменного тока от генератора постоянного тока
Генератор переменного тока и генератор постоянного тока 2021
Генераторы — это машины, которые преобразуют механическую энергию в электрическую. Их можно разделить на генераторы переменного тока и постоянного тока. Значение первых из них несравнимо больше, но другие все еще имеют огромное применение.
Что такое генератор переменного тока?
Современные источники переменного тока являются, почти исключительно, индукционными генераторами, где принцип работы основан на электромагнитной индукции. В этом случае электромагнитный ток получается путем вращения проводников в магнитном поле. Сегодня почти все генераторы переменного тока являются трехфазными. Это означает, что в их подвижной части, которая называется ротором, у них есть три отдельные катушки, размещенные между собой под углом 120 °, в которых три ЭМС сдвинуты по фазе точно на 120 ° или во временной последовательности для третий период.
Катушки обычно обозначаются буквами R, S и T, каждый из которых определяет одну фазу. В зависимости от привязки этих катушек передача электроэнергии от генератора потребителю осуществляется с помощью 4 или с 3 проводниками. Если в начале всех катушек связаны в одной точке (так называемая нулевая точка), то мы говорим о звездном соединении. В этом случае другие концы каждой катушки соединены с однофазным (или линейным) проводником, а один дополнительный проводник от нулевой точки — нулевой проводник, а передача осуществляется с помощью 4-х проводников. Если катушки связаны так, что один конец одного проводника подключен к началу следующего, и так до конца, то такое соединение называется треугольным соединением. Для звездного соединения напряжения между отдельными фазными проводниками и нулевыми проводниками называются фазными напряжениями. Все фазные напряжения равномерно нагруженной сети одинаковы и имеют эффективное значение 220 В:
Что такое генератор постоянного тока?
Современные разработки направлены на устранение машин постоянного тока, таких как генератор постоянного тока, но они по-прежнему широко используются, когда требуется очень плавное напряжение, чего не может быть достигнуто синхронным генератором переменного тока с диодом или сетевым адаптером. Основными частями являются статор и ротор. Статор обычно изготовлен из постоянного магнита, а ротор — из мягкого железа с медными проводниками, через которые протекает ток. Ток подается на ротор через щетки, которые попадают на сегменты меди. Чтобы вращать ротор непрерывно и не замыкаться, когда
щетка касается двух смежных сегментов, ротор должен иметь не менее трех сегментов, тогда как обычно их больше 10. Ток постоянного тока обмотки статора создает постоянное магнитное поле. Ротор вращается в этом магнитном поле и благодаря динамической индукции создает ЭМС. Все электродвижущие силы под одним полюсом находятся в одном и том же направлении, а под другим — в противоположном направлении. ЭМС под одним полюсом добавляется, и их общее значение получается на щетках. Значение ЭМС в одной обмотке изменяется от нуля, когда контур нормален на магнитных линиях силы, по максимуму, когда контур параллелен оси полюсов. Ток меняет интенсивность, но он не меняет направление и формирует пульсирующую волну. Во избежание пульсирующего тока вставляется фильтр.
Разница между генератором переменного и постоянного тока
1. Конструкция генератора переменного и постоянного тока
Статор в генераторах постоянного тока выполнен в виде полого ролика с магнитными полюсами внутри. Ротор состоит из сердечника, вала, обмотки и коллектора. Ядро состоит из взаимно изолированных листов динамо с канавками. Канавки обернуты медным проводом, концы которого соединены с коллектором. Коллектор выполнен в виде срезов, прикрепленных к валу. Углеродные щетки движутся вдоль коллектора и могут заряжать / разряжать ток. Статор генераторов переменного тока имеет на внутренней стороне ролика продольные канавки, в которых есть обмотки, в отличие от электромотора постоянного тока, где расположены магнитные полюса. Когда ток течет через обмотки в статоре, появляется магнитное поле. Ротор подобен ротору постоянного тока, только вместо коллектора на валу есть два взаимно изолированных кольца. Вращение ротора создает переменный ток в катушках статора, который передается приемнику.
2. Применение генератора переменного и постоянного тока
Электрические машины Dc могут работать как двигатель, так и генератор. Генераторы постоянного тока подавляют использование полупроводникового выпрямителя. Генераторы переменного тока широко используются для генерации / передачи электрической энергии.
Разница между генератором переменного и постоянного тока
Генератор переменного тока и постоянного тока Электроэнергия, которую мы используем, бывает двух видов: одна переменная, а другая прямая (означает отсутствие изменений с течением времени). Электросна
Содержание:
Генератор переменного тока и постоянного тока
Электроэнергия, которую мы используем, бывает двух видов: одна переменная, а другая прямая (означает отсутствие изменений с течением времени). Электроснабжение наших домов имеет переменный ток и напряжение, а источник питания автомобиля — неизменные токи и напряжения. Обе формы имеют свое собственное применение, и метод их создания одинаков, а именно электромагнитная индукция. Устройства, используемые для генерации энергии, известны как генераторы, а генераторы постоянного и переменного тока отличаются друг от друга не по принципу действия, а по механизму, который они используют для передачи генерируемого тока во внешние схемы.
Подробнее о генераторах переменного тока
Генераторы имеют два компонента обмотки: один — это якорь, который генерирует электричество за счет электромагнитной индукции, а другой — компонент поля, который создает статическое магнитное поле. Когда якорь движется относительно поля, возникает ток из-за изменения магнитного потока вокруг него. Ток известен как индуцированный ток, а напряжение, которое его возбуждает, известно как электродвижущая сила. Повторяющееся относительное движение, необходимое для этого процесса, достигается вращением одного компонента относительно другого. Вращающаяся часть называется ротором, а неподвижная часть — статором. Либо якорь, либо поле могут работать как ротор, но в основном компонент поля используется при выработке энергии высокого напряжения, а другой компонент становится статором.
Поток изменяется в зависимости от относительного положения ротора и статора, при этом магнитный поток, приложенный к якорю, постепенно изменяется и меняет полярность; этот процесс повторяется из-за вращения. Следовательно, выходной ток также меняет полярность с отрицательной на положительную и снова на отрицательную, в результате чего форма волны является синусоидальной. Из-за этого повторяющегося изменения полярности выхода генерируемый ток называется переменным током.
Генераторы переменного тока широко используются для выработки электроэнергии, и они преобразуют механическую энергию, поставляемую каким-либо источником, в электрическую.
Подробнее о генераторах постоянного тока
Небольшое изменение конфигурации контактных выводов якоря позволяет получить выход без изменения полярности. Такой генератор известен как генератор постоянного тока. Коммутатор — это дополнительный компонент, добавляемый к контактам якоря.
Выходное напряжение генератора становится синусоидальным из-за повторяющегося изменения полярностей поля относительно якоря. Коммутатор позволяет заменять контактные выводы якоря на внешнюю цепь. Щетки прикреплены к контактным выводам якоря, а контактные кольца используются для поддержания электрического соединения между якорем и внешней цепью. Когда полярность тока якоря изменяется, этому противодействуют путем изменения контакта с другим контактным кольцом, что позволяет току течь в том же направлении.
Следовательно, ток через внешнюю цепь — это ток, полярность которого не меняется со временем, отсюда и название постоянного тока. Однако ток меняется во времени и отображается в виде импульсов. Чтобы противостоять этим эффектам пульсации, необходимо регулировать напряжение и ток.
В чем разница между генераторами переменного и постоянного тока?
• Оба типа генераторов работают по одному и тому же физическому принципу, но способ подключения генерирующего ток компонента к внешней цепи изменяет способ прохождения тока по цепи.
• У генераторов переменного тока нет коммутаторов, но у генераторов постоянного тока они есть, чтобы противодействовать эффекту изменения полярности.
• Генераторы переменного тока используются для генерации очень высоких напряжений, а генераторы постоянного тока используются для генерации относительно более низких напряжений.
Генераторы тока: переменного и постоянного
Отсутствие электричества сегодня не становится проблемой как в быту, так и в промышленности. Широкий ассортимент генераторов тока позволяет решить проблему быстро, с минимальными трудозатратами. Резервные источники питания незаменимы в современной реальности — всему нужна электроэнергия. Гарантии, что подачу электроэнергии не прекратят в самый неподходящий момент – не может дать ни она организация. Поэтому резервная электростанция на базе генератора постоянного или переменного тока — важное, а зачастую незаменимое оборудование, которое обеспечивает непрерывность производства, комфорт в бытовой сфере, безопасность и непрерывность технологических процессов.
Что такое генератор тока
Когда нет электрической энергии, требуется получить её из другого источника. Наши предки, например, использовали силу ветра, течения рек. Впрочем, сегодня подобную энергию применяют, если не жалко времени и сил на возведение плотин и ветряков. Генераторы тока стандартно «работают» на топливе, за счет вращения обмотки в магнитном поле преобразовывая механическую энергию вращения в электричество. Ток возникает в замкнутом контуре, протекает по обмоткам, когда к электростанции подключается потребитель — именно так работает генератор тока.
В зависимости от того, как вращается магнитное поле (при неподвижном или подвижном проводнике) различают два типа этих электрических машин — генераторы постоянного или переменного тока.
В чем разница между постоянным и переменным током
Вспоминаем уроки физики. Электроток — заряженные микрочастицы, которые «бегут» в определенном направлении. У постоянного тока частицы движутся по прямой, в одном направлении от минуса к плюсу. У переменного движение электронов идет по синусоиде с определенной частотой (полярность между проводами меняется несколько раз за заданный промежуток времени).
Разница между движением заряженных частиц заложена в принцип работы генераторов электрического тока. Для простого обывателя можно сказать так: в розетке — переменный, в батарейке — постоянный. В качестве частного случая, с очень большим упрощением, можно сказать так: всё что с напряжением до 48 Вольт — всё постоянный, всё что от 100 до 500 Вольт — переменный.
Автор статьи и специалисты Mototech прекрасно осведомлены о том, что и постоянный ток может иметь практически любое напряжение (например, 380 Вольт на шине постоянного тока в ИБП), так же как и переменный ток для узких задач.
Несмотря на то, что конечный результат работы электростанций один — потребитель получает электроэнергию, методы преобразования механической энергии в электродвижущую силу и электричество различаются. Элементы (комплектующие) также отличны.
Полюсов может быть несколько (число минусов и плюсов всегда идентично). Поэтому сегодня потребитель может купить электростанцию необходимой мощности и обеспечить электричеством как дом, так и промышленный объект.
Конструктивной разницы в статоре и роторе между устройствами постоянного и переменного тока нет. Практически идентичны и силовые рамы. Существенное отличие в комплектации коммуникационного узла. Каждый выход механизма помимо щеток оснащен токопроводящими кольцами. «Закольцованный» ток движется по синусоиде и несколько раз в секунду достигает пика мощности. По типу устройства, характеристикам и принципу работы современные генераторы переменного тока делятся на синхронные и асинхронные.
Специфика синхронного устройства: скорость вращения ротора равна скорости вращения магнитного поля в рабочем зазоре.
Такие агрегаты могут быть однофазными и трехфазными.
Такая схема работает в простейшей конструкции, с одним плюсом и минусом, если положительных/отрицательных точек больше, ЭДС и ориентировочное количество электроэнергии рассчитываются по формуле.
Минус: на большую мощность при использовании устройств такого типа рассчитывать не стоит.
Устройства такого типа преобразуют механику в электроэнергию, вращая проволочную катушку в магнитном поле. Ток вырабатывается, когда силовые линии пересекают обмотку. До тех пор, пока магнитное поле соприкасается с проводником, в нем индуцируется электроток.
Идентичный принцип действует и в случае, если рамка вращается относительно магнита, пересекая силовые линии.
В электростанциях с синусоидальной подачей тока отсутствует реактивная мощность. То есть весь запас электроэнергии (с вычетом потерь на проводах) расходуется на нужды потребителя, а не на поддержание работоспособности устройства.
Дополнительное преимущество: агрегаты с трехфазным питанием можно использовать для питания высоковольтных потребителей.
Оба вида генераторов популярны в бытовой и промышленной сфере. Станции постоянного тока нашли применение в сфере транспорта. Так, в трамваях, троллейбусах обычно установлены двигатели, работающие на постоянном токе. Низковольтные устройства незаменимы для питания систем освещения в местах, где нет доступа к централизованной подачи электроэнергии. Например, на борту самолетов. Если большая мощность — не основополагающая характеристика электростанции, то генераторы постоянного тока отлично справятся с питанием оборудования в учебных, медицинских учреждениях, лабораториях. Полноценные дизельные электростанции постоянного тока используются на аэродромах для зарядки и питания бортовых систем летной техники.
Электростанции переменного тока необходимы практически для всего остального. 99% того, что питается от централизованной сети — это устройства переменного тока. Соответственно, аварийное питание этих объектов так же должно осуществляться от соответствующего оборудования.
Мototech специализируется на продаже электростанций различного типа. Поможем выбрать оптимальный вариант электростанции мощностью от 5 до 6000 кВА и конечно же, это будут электростанции переменного тока. Мы обеспечим сопроводительные строительные и электромонтажные работы, грамотную пуско-наладку и обслуживание устройств. С клиентами работают сотрудники с энергетическим образованием, поэтому квалифицированную информацию, ответы на вопросы и правильные расчеты характеристик в соответствии с вашими потребностями гарантируем.