чем опасны атомные электростанции

Чем опасны атомные электростанции

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Преимущества АЭС

Использование атомных станций для выработки электрической энергии – очень заманчивая и многообещающая идея. АЭС обладают рядом неоспоримых преимуществ перед гидроэлектростанциями и тепловыми энергетическими сооружениями. Здесь практически нет отходов, отсутствуют выбросы газа в атмосферу.

При сооружении атомных станций, к примеру, нет необходимости строить дорогостоящие плотины.

По экологическим характеристикам с АЭС могут сравниться разве что установки, которые используют энергию ветра или солнечное излучение. Но такие альтернативные источники энергии в настоящее время не обладают достаточной мощностью, которая сможет обеспечить стремительно возрастающие потребности человечества. Казалось бы, нужно сосредоточиться на строительстве исключительно атомных энергетических установок.

Однако существуют факторы, которые мешают повсеместному использованию атомных электростанций. Главный из них – возможные вредные последствия для жизни и здоровья людей, которые в принципе несет в себе радиация, а также недостаточное развитие систем, которые могли бы обеспечить защиту от возможных технологических катастроф.

В чем состоит опасность атомных электростанций

Наибольшее опасение специалистов вызывает вредоносное воздействие радиации на организмы людей и животных. Радиоактивные вещества способны попадать в организм вместе с пищей и при дыхании. Они могут накапливаться в костях, щитовидной железе и других тканях. Сильное радиационное поражение способно вызвать лучевую болезнь и привести к смертельному исходу. Это лишь немногие проблемы, которые может вызвать радиация, случайно вышедшая из-под контроля.

Разработка и внедрение систем безопасности на атомных станциях значительно удорожает строительство и, соответственно, ведет к повышению стоимости электроэнергии.

Даже самые строгие и всеобъемлющие меры безопасности при нынешнем развитии технологий, увы, не могут обеспечить полный контроль над процессами, происходящими в ядерном реакторе. Всегда существует риск того, что система даст сбой. При этом катастрофы могут быть вызваны как ошибками персонала, так и воздействием природных факторов, которые невозможно предотвратить.

Специалисты в области атомной энергетики постоянно работают над тем, чтобы свести вероятность отказов техники до приемлемого минимума. И все же пока нельзя утверждать, что они нашли безотказно действующий способ устранить вредные факторы, которые до сих пор мешают вывести атомные электростанции в число лидеров современной энергетики.

Источник

Опасны ли атомные электростанции: мнение экспертов

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Атомные станции — самый противоречивый источник энергии. Почему их строят все больше и больше, ведь опасность, казалось бы, очевидна? Что заставляет людей и после страшных катастроф экспериментировать с атомной энергией?

Упрощая, можно сказать, что источник энергии на АЭС — это природные вещества (прежде всего, уран), у которых атомы распадаются с выделением тепла. Реактор чаще всего — это высокотехнологичная печка, где теплота от распада нагревает воду и превращает ее в пар, а уже он крутит турбины и вырабатывает ток. Есть, впрочем, и реакторы, устроенные по другим принципам. В одной только городской черте Москвы есть больше трех десятков реакторов (включая неработающие), в основном они находятся в институтах. Ближайшая к столице действующая АЭС — Калининская в Тверской области.

Всего в России сейчас 10 работающих атомных станций. Происходит на них самое настоящее чудо техники. Одна топливная таблетка из диоксида урана весом 4,5 г выделяет столько же энергии, как почти две тонны дров или тонна угля, природного газа или нефти. Атомщики всегда напирают на то, что вреда экологии в их случае куда меньше — нет никакого дыма, а уголь даже радиации при сжигании выделяет больше, чем атомная станция, ведь в нем содержатся природные радиоактивные изотопы. Ну а современная АЭС не добавляет к естественному фону ничего — в случае штатной работы, конечно.

Руслан Алыев, заместитель главного инженера по безопасности и надежности Калининской АЭС: «Степень единения с природой может показать даже тот факт, что персонал периодически видит на территории пробегающих зайцев, лисиц. И вообще тут чайки, которые гнездятся на территории, иногда создают некоторые проблемы».

На самом деле, несмотря на кажущийся ужас, в случае с АЭС получается, как с авиацией: катастрофы у всех на слуху, но при этом полетов совершается каждый день так много, что в итоге самолет — самый безопасный, по статистике, вид транспорта. АЭС тоже вырабатывают невероятное количество энергии, в сравнении с которым единичные аварии тонут в море выгоды.

Между тем общественные страхи в некоторых странах берут верх. После Чернобыля навсегда запретила строительство АЭС Италия. После «Фукусимы» Япония, шедшая на третьем месте в мире по числу энергоблоков, остановила большую часть станций, хотя в последние два года опять начала открывать новые реакторы. В Германии, отказавшись от атома, уповают на ветряки и солнечные панели.

Другие страны, среди которых Россия, Китай, Франция, США, продолжают эксплуатировать и строить АЭС. В Великобритании обсуждают постройку аж 20 новых энергоблоков, чтобы реализовать программу массового перехода на электромобили — отчего, конечно, воздух городов станет гораздо чище.

Подробности — в сюжете программы «Чудо техники».

Источник

Катастрофические опасности атомных электростанций (АЭС)

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Чем потенциально опасны атомные электростанции?

Каково воздействие АЭС в нормальных и нештатных условиях, можно ли предотвратить катастрофы и какие меры принимаются для обеспечения безопасности на ядерных объектах?

Развитие и значение атомных электростанций

Первые исследования по ядерной энергетике пришлись на 1890-е гг., а строительство крупных объектов началось с 1954 г. Атомные электростанции возводятся для получения энергии путем радиоактивного распада в реакторе.

Сейчас используются такие типы реакторов третьего поколения:

В период с 1960 г. по 2008 г. в мире были введены в работу около 540 атомных реакторов. Из них около 100 закрылись по разным мотивам, в том числе из-за негативного воздействия АЭС на природу. До 1960 г. реакторы отличались высоким показателем аварийности из-за технологического несовершенства и недостаточной проработки регулирующей нормативной базы. В следующие годы требования ужесточались, а технологии совершенствовались. На фоне уменьшения запасов природных энергоресурсов, высокой энергоэффективности урана строились более безопасные и оказывающее меньшее негативное воздействие АЭС.

Для плановой работы атомных объектов добывается урановая руда, из которой обогащением получается радиоактивный уран. В реакторах вырабатывается плутоний – самое токсичное из существующих веществ, полученных человеком. Обработка, транспортировка и захоронение отходов деятельности АЭС требует тщательных мер предосторожности и безопасности.

Факторы воздействия АЭС на окружающий мир

Наряду с прочими промышленными комплексами атомные электростанции оказывают воздействие на природную среду и человеческую жизнедеятельность. В практике использования энергетических объектов нет на 100% надежных систем. Анализ воздействия АЭС проводится с учетом возможных последующих рисков и ожидаемой пользы.

При этом совершенно безопасной энергетики не существует. Воздействие АЭС на окружающую среду начинается с момента возведения, продолжается при эксплуатации и даже по ее окончании. На территории расположения станции по выработке электроэнергии и за ее пределами следует предусматривать возникновение таких негативных влияний:

Один из самых значительных загрязняющих факторов – тепловое воздействие АЭС, возникающее при функционировании градирен, охлаждающих систем и брызгальных бассейнов. Они влияют на микроклимат, состояние вод, жизнь флоры и фауны в радиусе нескольких километров от объекта. КПД атомных электростанций составляет около 33-35%, остальное тепло (65-67%) выделяется в атмосферу.

На территории санитарной зоны в результате воздействия АЭС, в частности водоемов-охладителей, выделяются тепло и влага, вызывая повышение температуры на 1-1,5° в радиусе нескольких сот метров. В теплое время года над водоемами образуются туманы, которые рассеиваются на значительное удаление, ухудшая инсоляцию и ускоряя разрушение зданий. При холодной погоде туманы усиливают гололедные явления. Брызговые устройства вызывают еще большее повышение температуры в радиусе нескольких километров.

Охлаждающие воду испарительные башни-градирни испаряют летом до 15%, а зимой до 1-2% воды, формируя пароконденсатные факелы, вызывая на 30-50% уменьшение солнечного освещения на прилегающей территории, ухудшая метеорологическую видимость на 0,5-4 км. Воздействие АЭС сказывается на экологическом состоянии и гидрохимическом составе воды прилегающих водоемов. После испарения воды из охладительных систем в последних остаются соли. Для сохранения стабильного солевого баланса часть жесткой воды приходится сбрасывать, заменяя ее свежей.

В нормальных условиях эксплуатации радиационное заражение и влияние ионизирующего излучения сведены к минимуму и не превышают допустимый природный фон. Катастрофическое воздействие АЭС на окружающую среду и людей может возникнуть при авариях и утечках.

Возможные техногенные воздействия АЭС

Не стоит забывать про техногенные риски, возможные в атомной энергетике. Среди них:

Нормативный срок функционирования АЭС составляет 30 лет. После вывода станции из эксплуатации требуется сооружение прочного, сложного и дорогостоящего саркофага, который придется обслуживать еще очень длительный промежуток времени.

Защита от негативных влияний, их контроль

Предполагается, что воздействие АЭС в виде всех перечисленных выше факторов должно контролироваться на каждом этапе проектирования и эксплуатации станции.Специальные комплексные меры призваны спрогнозировать и предотвратить выбросы, аварии и их развитие, минимизировать последствия.

Важно уметь прогнозировать геодинамические процессы на территории станции, нормировать электромагнитные излучение и шум, воздействующие на персонал. Для размещения энергетического комплекса участок выбирается после тщательного геологического и гидрогеологического обоснования, проводится анализ его тектонического строения. При строительстве предполагается тщательное соблюдение технологической последовательности работ.

Задача науки, обслуживающей и практической деятельности – не допустить чрезвычайных ситуаций, создать нормальные условия для эксплуатации атомных станций. Одним из факторов экозащиты от воздействия АЭС является нормирование показателей, то есть установление допустимых значений того или иного риска и следование им.

Для минимизации воздействия АЭС на окружающую территорию, природные ресурсы и людей проводится комплексный радиоэкологический мониторинг. Чтобы отвратить ошибочные действия работников электростанции, осуществляется многоуровневая подготовка, занятия на учебных тренажерах и другие мероприятия. Для предотвращения террористических угроз применяются физические защитные меры, а также ведется деятельность специальных государственных организаций.

Современные атомные станции создаются с высокими показателями защищенности и безопасности. Они должны соответствовать высочайшим требованиям надзорных органов, включая защиту от загрязнения радионуклидами и другими вредными веществами. Задача науки – снизить риск воздействия АЭС в результате аварии. Для ее решения проводится разработка более безопасных по конструкции реакторов, имеющих внушительные внутренние показатели самозащиты и самокомпенсации.

Насколько безопасно воздействие АЭС на окружающий мир?

В природе существует естественная радиация. Но для экологии опасно интенсивное радиационное воздействие АЭС в случае аварии, а также тепловое, химическое и механическое. Также весьма актуальна проблема с утилизацией ядерных отходов. Для безопасного существования биосферы нужны особые защитные меры и средства. Отношение к строительству атомных электростанций в мире крайне неоднозначно, особенно после ряда крупных катастроф на ядерных объектах.

Восприятие и оценка атомной энергетики в обществе никогда не будут прежними после Чернобыльской трагедии, произошедшей в 1986 году. Тогда в атмосферу попало до 450 разновидностей радионуклидов, включая короткоживущий йод-131 и долгоживущие цезий-131, стронций-90.

После аварии некоторые исследовательские программы в разных странах были закрыты, нормально функционирующие реакторы превентивно прекратили свое действие, а отдельные государства ввели мораторий на ядерную энергетику. Вместе с тем около 16% электроэнергии в мире вырабатывается с помощью АЭС. Заменить атомные электростанции способно развитие альтернативных источников энергии.

Источник

Вечная энергия. Как российские атомщики спасают планету и меняют мир

Атомная промышленность появилась в нашей стране более 75 лет назад, моментально став одним из локомотивов ее развития. Сегодня «Росатом» генерирует около 20 процентов электрической энергии в России. Атомные станции дают свет в миллионы жилых домов, тысячи школ и сотни заводов. Но время не стоит на месте. В XXI веке атомная энергетика приобретает все большее значение на фоне глобального потепления и сокращения запасов природных ресурсов. Как российская атомная отрасль помогает решать вопросы экологии и сохранения климата? Будет ли создан неисчерпаемый источник энергии и какие технологии изменят атомную промышленность? Ответы на эти и другие вопросы — в первом тексте совместного проекта «Ленты.ру» и Homo Science.

Точкой отсчета истории российской атомной промышленности принято считать 1945 год. Именно тогда был создан специальный орган при Государственном комитете обороны СССР, отвечавший за работы по урану. Власти Союза быстро поняли: за атомной промышленностью будущее. В ее развитие тут же начали вкладывать огромные деньги и собирать лучших специалистов страны для работы на секретных проектах.

Результаты не заставили себя ждать — один за другим были реализованы сразу несколько прорывных проектов. В 1946 году впервые на Европейском континенте осуществлена самоподдерживающаяся цепная реакция деления урана — произошло это в реакторе Ф-1. Руководил проектом лично Игорь Курчатов. А всего через три года на Семипалатинском полигоне прошли успешные испытания первого советского ядерного заряда («Изделия 501»). Так СССР стал полноценной ядерной державой.

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Впрочем, уже тогда было понятно: атомная промышленность нужна не только для военных, но и для гражданских целей. В 1949 году Советы запускают первый в Европе исследовательский тяжеловодный реактор ТВР. Благодаря этому произошло множество открытий в физике и технике ядерных реакторов. А в 1954 году в Обнинске заработала первая в мире промышленная гражданская атомная электростанция, получившая реактор с говорящим названием АМ-1 — «атом мирный».

Во-первых, для жителя крупного города гораздо опаснее загрязнение воздуха от предприятий и углеродных электростанций, тогда как воздействие АЭС на окружающую среду в разы ниже.

Во-вторых, ядерные отходы, которые были получены за всю историю работы атомной отрасли США, где работает крупнейший в мире парк АЭС, можно было бы разместить в герметичных контейнерах высотой шесть метров, занимающих площадь размером с один футбольный стадион, так что их объемы не так велики, как кажется.

В-третьих, ядерные испытания запрещены и строго контролируются во всем мире. И как раз избыточный плутоний, извлеченный из ядерных боеголовок, сегодня перерабатывают для использования в качестве топлива для АЭС.

Вызовы XXI века

В отличие от солнечных и ветряных станций, у АЭС есть весомое преимущество: при сопоставимой мощности они занимают намного меньше места, чем ветропарки или солнечные станции.

Российская атомная промышленность нашла решение экологических проблем в концепции «зеленого квадрата», когда основными источниками энергии становятся солнце, ветер, вода и атом.

Российские АЭС, используемые вместо угольных или газовых станций, по оценкам, спасают планету от выбросов более 100 миллионов тонн парниковых газов. Это около семи процентов всех выбросов в России. В то же время в мировом масштабе АЭС предотвращают попадание в атмосферу миллиардов тонн парниковых газов.

В 2021 году «Росатом» вошел в первую пятерку рейтинга самых экологичных российских компаний по версии журнала Forbes. По словам генерального директора госкорпорации Алексея Лихачева, это стало возможным благодаря производству чистой атомной электроэнергии и развитию новых направлений.

Одним из них является вторичное использование отработавшего ядерного топлива (ОЯТ). В настоящее время в мире за весь период работы всех АЭС накопилось около 290 тысяч тонн отработавшего ядерного топлива. Однако объемы накоплений отходов угольных ТЭЦ в разы больше — в России они оцениваются в 1,5 миллиарда тонн и занимают 28 тысяч гектаров территорий. Лишь малая часть этих отходов — менее десяти процентов — используется повторно.

В отличие от угля, урановое топливо не выгорает до конца и может применяться для изготовления нового. Реализация этой технологии позволяет организовать замкнутый цикл использования ядерного топлива. При такой технологии практически отсутствуют отходы, и атомная энергетика будет обеспечена топливом на столетия вперед. Фактически об атоме можно говорить как о возобновляемом источнике энергии.

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Реакторы на быстрых нейтронах относятся к четвертому поколению АЭС. Пока немногие страны способны освоить эти технологии. Среди преимуществ нового поколения реакторов — меньшее количество отходов и возможность воспроизводства топлива.

Специальный представитель «Росатома» по международным и научно-техническим проектам Вячеслав Першуков отметил, что в России уже идет переход к реакторам четвертого поколения:

Реакторы на быстрых нейтронах с натриевым теплоносителем уже работают на Белоярской АЭС — БН-600 и БН-800, так что переход на четвертое поколение уже состоялся. А первый реактор со свинцовым теплоносителем БРЕСТ-300 сооружается на площадке Сибирского химкомбината (СХК) в Северске

Однако для внедрения реакторов на быстрых нейтронах требуется доказать их экономическую целесообразность. По словам Першукова, они должны выйти на показатели стоимости электроэнергии ниже, чем у водо-водяных реакторов.

«Перед нами поставлена цель: выйти на 25-процентную долю атомной энергетики в энергобалансе страны. Но пока неясно, будет это обеспечено за счет новой (дополнительной) мощности, или атомные станции будут замещать углеродную генерацию — например, угольные блоки. Это зависит от темпов роста энергопотребления. К 2100 году мы ожидаем, что реакторы на быстрых нейтронах будут достаточно развиты, чтобы составлять основной парк атомной генерации», — объясняет Першуков.

Малый атом

Кроме строительства крупных АЭС, «Росатом» занимается еще одним важным направлением — атомными станциями малой мощности (АСММ). Подобно крупным АЭС, они не производят вредных выбросов в атмосферу и способны работать на земле и даже на воде. Их предназначение — генерация электроэнергии, выработка тепла и опреснение воды для удаленных населенных пунктов и промышленных объектов.

Россия имеет богатый опыт эксплуатации атомных станций малой мощности — Билибинская атомная теплоэлектроцентраль, действующая с 1974 года, обеспечивала электричеством около 80 процентов изолированной Чаун-Билибинской энергосистемы на Чукотке. В 2020 году ее начали выводить из эксплуатации, а в регионе заработала первая в мире плавучая атомная теплоэлектростанция (ПАТЭС) «Академик Ломоносов».

Судно имеет две реакторные установки, способные вырабатывать до 76 мегаватт, — этого достаточно для обеспечения энергией города с населением до 100 тысяч человек.

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

В планах «Росатома» — строительство четырех модернизированных плавучих энергоблоков (МПЭБ) установленной мощностью не менее 106 мегаватт каждый, которые обеспечат электроэнергией Баимский горно-обогатительный комбинат, создаваемый для освоения крупнейшего по оцененным запасам месторождения меди и золота на постсоветском пространстве.

Реализация еще одного проекта по строительству станции малой мощности, но уже в наземном варианте, должна вскоре начаться в Якутии.

В настоящее время над технологиями АСММ работают не только в России. Аналогичные разработки ведут в США, Канаде и странах Европы, с которыми Россия вступает в конкуренцию за потенциальных заказчиков малых АЭС, имея преимущество в виде уже работающей плавучей АЭС.

Премьер-министр Чехии Андрей Бабиш назвал именно малые АЭС оптимальным решением для строительства атомных мощностей в стране. Власти и бизнес в АСММ по сравнению с крупными АЭС привлекают меньший объем капитальных затрат, более высокая скорость строительства, снижение рисков при строительно-монтажных работах, возможности модульной компоновки и тестирования новых технологий.

У России, уже имеющей готовые решения малых АЭС, в том числе ПАТЭС — уникальный в своем роде проект, есть все шансы завоевать значительную долю мирового рынка АСММ.

Деньги из ветра

В «Росатоме» работают и над ветряными электростанциями. Так, общая установленная мощность всех введенных на сегодняшний день ветропарков компании «НоваВинд», подразделения «Росатома», составляет 660 мегаватт электроэнергии. Всего же с ввода в эксплуатацию в марте 2020 года первого ветропарка — Адыгейской ВЭС — ветропарки «НоваВинд» поставили в единую сеть России один миллион мегаватт-часов. Ключевые компоненты для них производятся в России: предприятие в Волгодонске Ростовской области выпускает генераторы, гондолы, ступицы и основания ветряных башен. В своем классе российская гондола для ВЭС оказалась самой легкой и компактной в мире.

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Ветряные электростанции можно строить в самых отдаленных уголках страны, без развитой инфраструктуры, что является их неоспоримым преимуществом. Ветроустановки способны работать до 20 лет, практически не требуя обслуживания, — все параметры ВЭС могут контролироваться дистанционно.

Большой интерес к чистой электроэнергии проявляют предприятия, импортирующие свою продукцию в Евросоюз, где ожидается введение углеродного налога, и филиалы западных компаний в России. Среди них — фабрика «Нестле Пурина ПетКер», с 2020 года получающая электроэнергию с Адыгейской ВЭС.

До 2027 года «Росатом» планирует ввести ветростанций общей мощностью 1,7 гигаватта. Госкорпорация будет предлагать зарубежным заказчикам сотрудничество по разработке проектов в области ветроэнергетики. По словам гендиректора «НоваВинда» Александра Корчагина, одной из первых стран, где возможно строительство ВЭС по российскому проекту, может стать Вьетнам.

Зеленый носитель

Переход к зеленым источникам энергии сделал чрезвычайно важной и разработку накопителей, которые могли бы хранить энергию и отдавать ее в случае необходимости. Например, солнечные панели вырабатывают энергию лишь в дневное время, а пик ее потребления наступает после захода солнца. Ветряные станции тоже зависят от внешних условий, поэтому им требуется накопитель.

Любые электростанции в своей работе привязаны к спросу: производство и потребление происходят в моменте. Развитие технологий хранения энергии позволит эту проблему решить. Сейчас «Росатом» планирует построить в Калининградской области завод по производству накопителей энергии. Речь о литий-ионных аккумуляторах, которые могут применяться в электротранспорте.

Кроме того, что он не наносит вреда окружающей среде и хорош для нужд энергетики тем, что его можно производить при избытке энергии и сжигать при недостатке. Поэтому популярность водорода как зеленого носителя сегодня растет.

Например, в Евросоюзе планируют увеличить производство водорода до 1 миллиона тонн в 2024 году и до 10 миллионов тонн — в 2030-м. На развитие чистого железнодорожного транспорта Евросоюз выделил около 2 миллиардов евро и более 20 миллиардов — на развитие чистого городского.

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

Россия имеет все возможности стать одним из ведущих мировых производителей, потребителей и экспортеров водорода в качестве носителя энергии. Уже сейчас водород производится российскими АЭС в небольших количествах для охлаждения оборудования станций. «Росатом» изучает возможность наладить промышленное производство водорода и выпуск электролизеров для его производства и транспортировки.

В России начали разрабатывать методы использования водорода на транспорте. Первые российские поезда на водородных топливных элементах могут появиться на Сахалине. Для опытной партии из семи поездов на острове создадут малотоннажное производство водорода и сеть топливозаправочных комплексов. Партнерами российской стороны в проекте выступят французские компании EDF и Air Liquide.

Вечный атом

Чистый и безграничный источник энергии человечество может получить в том случае, если удастся освоить термоядерный синтез. Международный проект ИТЭР — еще один шаг в этом направлении.

ИТЭР (International Thermonuclear Experimental Reactor, экспериментальный термоядерный реактор) считается одним из самых сложных научно-технических проектов современности. Идею создания подобной установки предложил еще в 1985 году академик Евгений Велихов. Инициативу СССР поддержали во Франции и США.

Сейчас в проекте участвуют 35 стран, в том числе Россия, Китай, Индия, Япония, Южная Корея, США и государства Евросоюза. ИТЭР строится с 2010 года в 60 километрах от Марселя во Франции, затраты на него уже в 2017 году превысили 22 миллиарда долларов. Получение первой плазмы на реакторе запланировано на середину 2020-х годов.

Цель проекта ИТЭР — продемонстрировать возможность использования термоядерной реакции в промышленных масштабах и отработать технические решения, которые в будущем позволят создать энергетический термоядерный реактор. Такой реактор в перспективе может дать человечеству практически неисчерпаемый и экологически чистый источник энергии.

В качестве топлива для термоядерного реактора используются изотопы водорода дейтерий и тритий. Дейтерий широко распространен в природе — его содержит каждая шеститысячная молекула воды в Мировом океане. Тритий нарабатывается непосредственно в реакторе. Таким образом, для обеспечения топливом будущей промышленной термоядерной электростанции достаточно иметь доступ к морской воде.

Появление и строительство ИТЭР было бы невозможным без России, которая поставляет 25 ключевых высокотехнологичных систем. Созданные Россией для международного термоядерного реактора сверхпроводники и СВЧ-генераторы большой мощности по многим параметрам считаются лучшими в мире.

В число ключевых входит производство девяти систем измерения параметров плазмы, коннекторы, компоненты дивертора и так далее. Россия также работает над материалами и сварными соединениями, которые должны выдерживать мощные тепловые потоки.

чем опасны атомные электростанции. Смотреть фото чем опасны атомные электростанции. Смотреть картинку чем опасны атомные электростанции. Картинка про чем опасны атомные электростанции. Фото чем опасны атомные электростанции

В «Росатоме» особо подчеркивают: пандемия хоть и добавила сложностей в реализации проекта, но на сроки запуска пока не повлияла. По словам Першукова, «выход на первую плазму в 2025 году пока никто не отменял». «В 2035 году намечен физический пуск с учетом реакций дейтерия/трития», — отметил специалист.

Исследования в области термоядерной энергетики в России не ограничиваются участием в международном проекте. В 2021 году правительство России утвердило национальный проект по развитию атомной науки и технологий, в который входит первая за 30 лет целостная программа по управляемому термоядерному синтезу.

В этом году была также запущена первая за последние 20 лет новая российская термоядерная установка — токамак Т-15 МД. К 2030 году в Троицке на базе уже существующего токамака с сильным полем планируют запустить национальный токамак реакторных технологий. Это вместе с Т-15МД создаст мощную экспериментальную базу и обеспечит нашей стране статус одного из мировых лидеров в области управляемого термоядерного синтеза.

При этом технологии термоядерной энергетики обещают найти применение не только на Земле — разрабатываемый в Троицке плазменный ракетный двигатель на базе магнитно-плазменных ускорителей может открыть новые возможности не только на околоземной орбите, но и в освоении дальнего космоса.

Госкорпорация «Росатом» в 2020 году возглавила рейтинг лучших работодателей России, составленный крупнейшей в стране кадровой платформой HeadHunter. Госкорпорация поставила абсолютный рекорд за десять лет существования рейтинга по набранным баллам — 142 балла, опередив более чем на 22 балла крупнейших работодателей в первой тройке списка.

В 2021 году «Росатом» снова участвует в рейтинге и представлен в отрасли «Энергетика, добыча и переработка сырья».

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *