чем опасно облучение радиацией
Чем опасно облучение радиацией
Острое воздействие на здоровье, такое как ожог кожи, может возникнуть, когда доза облучения превышает определенные уровни. Низкие дозы ионизирующего излучения увеличивают риск развития более долгосрочных последствий, таких как рак. Впервые повреждающее действие ионизирующего излучения было описано в 1896, когда у ряда больных, которым делали рентгеновские снимки, а также у врачей, их выполнявших, были обнаружены рентгеновские дерматиты. Такая же картина поражения кожных покровов была выявлена после воздействия радия. Пьер Кюри, желая выяснить действие излучения радия на кожу, облучил собственную руку!
Воздействие ионизирующего излучения на организм человека может быть внутренним (когда радионуклиды попадают во внутренние среды организма) и внешним (когда радиоактивные частицы оседает на коже или одежде). Воздействие может также произойти в результате облучения от внешнего источника (например, от рентгеновского оборудования).
Радиационное повреждение тканей зависит от полученной дозы облучения. Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред и выражается в Зивертах (Зв). 1 Зв это очень существенная величина (пороговая доза острой лучевой болезни), поэтому обычно применяются меньшие ее единицы, такие как миллизиврет (мЗв) и микрозиверт (мкЗв). Соответственно, 1 Зв = 1000 мЗв, а 1 мЗв = 1000 мкЗв. Скажем, 10 мкЗв это средняя доза облучения космической радиации, которую получит пассажир авиалайнера в течение 3 часов полета. А 10 мЗв – доза от одной компьютерной томографии.
Если доза является низкой или воздействует длительный период времени, риск развития различных патологий существенно снижается, поскольку увеличивается вероятность восстановления поврежденных тканей. Тем не менее, долгосрочные эффекты, такие как рак, могут проявиться даже спустя десятилетия. Этот риск выше у детей и подростков, так как они намного более чувствительны к воздействию радиации.
Радиационная безопасность населения достигается путем ограничения воздействия от всех основных видов облучения:
— техногенные источники при их нормальной эксплуатации (различные производственные установки);
— техногенные источники в результате радиационной аварии;
— природные источники;
— медицинские источники (рентгеновские аппараты).
Годовая доза облучения населения не должна превышать основные пределы доз, указанных в Нормах радиационной безопасности (НРБ-99/2009. СанПиН 2.6.1.2523-09). В настоящий момент эта величина равна 1 мЗв в год в среднем за любые последовательные 5 лет, но не более 5 мЗв в один год. Здесь учитывается радиологическая нагрузка на организм от потребляемых продуктов, атмосферного воздуха, условий проживания, а так же медицинские диагностические манипуляции с использованием ионизирующего излучения.
В целом, в условиях повседневности радиация не представляет для нас серьезной опасности. В бытовых условиях человек редко может столкнуться с опасными источниками радиации, а если такое происходит, то, как правило, в силу невежества или халатности работников предприятий, где используются источники ионизирующего излучения.
Помните, что, несмотря на легкодоступные диагностические сервисы, следует проводить радиологические исследования (КТ, рентген, флюорография) ТОЛЬКО по назначению врача.
Вопреки распространенному мнению, нет никаких научных доказательств способности алкоголя выводить радиацию из организма. То же самое касается препаратов йода – его применение оправдано только в случае радиационной аварии при нахождении пострадавших в 30 км зоне ЧС для защиты щитовидный железы от попадания радиоактивного йода. Однако йодопротекторы используются строго по инструкции и при вышеуказанных условиях. Вне зоны поражения пить таблетки или раствор йода, мазать шею может быть опасно!
Важным защитным приемом для укрепления организма при неблагоприятном радиологическом фоне (что актуально для некоторых биогеохимических провинций) является организация оптимального питания. Основными принципами построения рационов питания на загрязненной радиоактивными изотопами территории являются увеличение количества белков до 15% калорийности рациона и повышение в рационе на 20-50% по сравнению с рекомендуемыми возрастными нормами содержания витаминов-антиоксидантов: Е, С, А, биофлавоноидов, а пищевых волокон на 30%. Необходимо также обеспечить повышенное поступление минеральных веществ: кальция, калия, йода, магния, железа, селена. Для достижения этих задач необходимо достаточное содержание в рационе нежирных сортов мяса, птицы, рыбы, молочных продуктов, широкое использование свежих овощей, фруктов и зелени, добытых и выращенных в экологически благоприятных районах, так как сами по себе продукты накапливают радионуклиды, если выращиваются на загрязненной территории.
В своей жизни мы постоянно сталкиваемся с влиянием ионизирующего излучения, но волноваться не стоит — вред здоровью от «повседневных» природных источников значительно меньше вреда от беспокойства по этому поводу.
Ионизирующее излучение, последствия для здоровья и защитные меры
Основные факты
Что такое ионизирующее излучение?
Ионизирующее излучение — это вид энергии, высвобождаемой атомами в форме электромагнитных волн (гамма- или рентгеновское излучение) или частиц (нейтроны, бета или альфа). Спонтанный распад атомов называется радиоактивностью, а избыток возникающей при этом энергии является формой ионизирующего излучения. Нестабильные элементы, образующиеся при распаде и испускающие ионизирующее излучение, называются радионуклидами.
Все радионуклиды уникальным образом идентифицируются по виду испускаемого ими излучения, энергии излучения и периоду полураспада.
Активность, используемая в качестве показателя количества присутствующего радионуклида, выражается в единицах, называемых беккерелями (Бк): один беккерель — это один акт распада в секунду. Период полураспада — это время, необходимое для того, чтобы активность радионуклида в результате распада уменьшилась наполовину от его первоначальной величины. Период полураспада радиоактивного элемента — это время, в течение которого происходит распад половины его атомов. Оно может находиться в диапазоне от долей секунды до миллионов лет (например, период полураспада йода-131 составляет 8 дней, а период полураспада углерода-14 — 5730 лет).
Источники излучения
Люди каждый день подвергаются воздействию естественного и искусственного излучения. Естественное излучение происходит из многочисленных источников, включая более 60 естественным образом возникающих радиоактивных веществ в почве, воде и воздухе. Радон, естественным образом возникающий газ, образуется из горных пород, почвы и является главным источником естественного излучения. Ежедневно люди вдыхают и поглощают радионуклиды из воздуха, пищи и воды.
Люди подвергаются также воздействию естественного излучения из космических лучей, особенно на большой высоте. В среднем 80% ежегодной дозы, которую человек получает от фонового излучения, это естественно возникающие наземные и космические источники излучения. Уровни такого излучения варьируются в разных реогрфических зонах, и в некоторых районах уровень может быть в 200 раз выше, чем глобальная средняя величина.
На человека воздействует также излучение из искусственных источников — от производства ядерной энергии до медицинского использования радиационной диагностики или лечения. Сегодня самыми распространенными искусственными источниками ионизирующего излучения являются медицинские аппараты, как рентгеновские аппараты, и другие медицинские устройства.
Воздействие ионизирующего излучения
Воздействие излучения может быть внутренним или внешним и может происходить различными путями.
Внутренне воздействие ионизирующего излучения происходит, когда радионуклиды вдыхаются, поглощаются или иным образом попадают в кровообращение (например, в результате инъекции, ранения). Внутреннее воздействие прекращается, когда радионуклид выводится из организма либо самопроизвольно (с экскрементами), либо в результате лечения.
Внешнее радиоактивное заражение может возникнуть, когда радиоактивный материал в воздухе (пыль, жидкость, аэрозоли) оседает на кожу или одежду. Такой радиоактивный материал часто можно удалить с тела простым мытьем.
Воздействие ионизирующего излучения может также произойти в результате внешнего излучения из соответствующего внешнего источника (например, такое как воздействие радиации, излучаемой медицинским рентгеновским оборудованием). Внешнее облучение прекращается в том случае, когда источник излучения закрыт, или когда человек выходит за пределы поля излучения.
Люди могут подвергаться воздействию ионизирующего излучения в различных обстоятельствах: дома или в общественных местах (облучение в общественных местах), на своих рабочих местах (облучение на рабочем месте) или в медицинских учреждениях (пациенты, лица, осуществляющие уход, и добровольцы).
Воздействие ионизирующего излучения можно классифицировать по трем случаям воздействия.
Первый случай — это запланированное воздействие, которое обусловлено преднамеренным использованием и работой источников излучения в конкретных целях, например, в случае медицинского использования излучения для диагностики или лечения пациентов, или использование излучения в промышленности или в целях научных исследований.
Второй случай — это существующие источники воздействия, когда воздействие излучения уже существует и в случае которого необходимо принять соответствующие меры контроля, например, воздействие радона в жилых домах или на рабочих местах или воздействие фонового естественного излучения в условиях окружающей среды.
Последний случай — это воздействие в чрезвычайных ситуациях, обусловленных неожиданными событиями, предполагающими принятие оперативных мер, например, в случае ядерных происшествий или злоумышленных действий.
На медицинское использование излучения приходится 98% всей дозы облучения из всех искусственных источников; оно составляет 20% от общего воздействия на население. Ежегодно в мире проводится 3 600 миллионов радиологических обследований в целях диагностики, 37 миллионов процедур с использованием ядерных материалов и 7,5 миллиона процедур радиотерапии в лечебных целях.
Последствия ионизирующего излучения для здоровья
Радиационное повреждение тканей и/или органов зависит от полученной дозы облучения или поглощенной дозы, которая выражается в грэях (Гр).
Эффективная доза используется для измерения ионизирующего излучения с точки зрения его потенциала причинить вред. Зиверт (Зв) — единица эффективной дозы, в которой учитывается вид излучения и чувствительность ткани и органов. Она дает возможность измерить ионизирующее излучение с точки зрения потенциала нанесения вреда. Зв учитывает вид радиации и чувствительность органов и тканей.
Зв является очень большой единицей, поэтому более практично использовать меньшие единицы, такие как миллизиверт (мЗв) или микрозиверт (мкЗв). В одном мЗв содержится тысяча мкЗв, а тысяча мЗв составляют один Зв. Помимо количества радиации (дозы), часто полезно показать скорость выделения этой дозы, например мкЗв/час или мЗв/год.
Выше определенных пороговых значений облучение может нарушить функционирование тканей и/или органов и может вызвать острые реакции, такие как покраснение кожи, выпадение волос, радиационные ожоги или острый лучевой синдром. Эти реакции являются более сильными при более высоких дозах и более высокой мощности дозы. Например, пороговая доза острого лучевого синдрома составляет приблизительно 1 Зв (1000 мЗв).
Если доза является низкой и/или воздействует длительный период времени (низкая мощность дозы), обусловленный этим риск существенно снижается, поскольку в этом случае увеличивается вероятность восстановления поврежденных тканей. Тем не менее риск долгосрочных последствий, таких как рак, который может проявиться через годы и даже десятилетия, существует. Воздействия этого типа проявляются не всегда, однако их вероятность пропорциональна дозе облучения. Этот риск выше в случае детей и подростков, так как они намного более чувствительны к воздействию радиации, чем взрослые.
Эпидемиологические исследования в группах населения, подвергшихся облучению, например людей, выживших после взрыва атомной бомбы, или пациентов радиотерапии, показали значительное увеличение вероятности рака при дозах выше 100 мЗв. В ряде случаев более поздние эпидемиологические исследования на людях, которые подвергались воздействию в детском возрасте в медицинских целях (КТ в детском возрасте), позволяют сделать вывод о том, что вероятность рака может повышаться даже при более низких дозах (в диапазоне 50-100 мЗв).
Дородовое воздействие ионизирующего излучения может вызвать повреждение мозга плода при сильной дозе, превышающей 100 мЗв между 8 и 15 неделей беременности и 200 мЗв между 16 и 25 неделей беременности. Исследования на людях показали, что до 8 недели или после 25 недели беременности связанный с облучением риск для развития мозга плода отсутствует. Эпидемиологические исследования свидетельствуют о том, что риск развития рака у плода после воздействия облучения аналогичен риску после воздействия облучения в раннем детском возрасте.
Деятельность ВОЗ
ВОЗ разработала радиационную программу защиты пациентов, работников и общественности от опасности воздействия радиации на здоровье в планируемых, существующих и чрезвычайных случаях воздействия. Эта программа, которая сосредоточена на аспектах общественного здравоохранения, охватывает деятельность, связанную с оценкой риска облучения, его устранением и информированием о нем.
В соответствии с основной функцией, касающейся «установления норм и стандартов, содействия в их соблюдении и соответствующего контроля» ВОЗ сотрудничает с 7 другими международными организациями в целях пересмотра и обновления международных стандартов базовой безопасности, связанной с радиацией (СББ). ВОЗ приняла новые международные СББ в 2012 году и в настоящее время проводит работу по оказанию поддержки в осуществлении СББ в своих государствах-членах.
Биологическое действие ионизирующего излучения.
Тема: Биологическое действие ионизирующего излучения.
Ионизирующее излучение было открыто в 1895 году Вильгельмом Конрадом Рентгеном в Германии, который зафиксировал неизвестные ранее лучи, которые проникали сквозь тело человека. Эти лучи, однако, не были связаны с естественной радиоактивностью. Рентген получил их в электронной лампе, разгоняя поток электронов от одного электрода к другому. Это открытие вдохновило других учёных искать таинственные лучи, и в 1896 году было сделано следующее открытие: французский физик Анри Беккерель изучал минеральный образец урана и обнаружил, что он испускал лучи того же самого типа, что и лучи Рентгена. Беккерель обнаружил явление естественной радиоактивности.
Теперь поиск химических элементов, испускающих радиацию, стал более целенаправленным. В 1898 году учёные Мария и Пьер Кюри выделили два радиоактивных элемента: полоний и радий. Радий, который является высоко радиоактивным химическим элементом, скоро оказался полезным в медицине. А в то время об опасности вредного воздействия излучения на организм не было известно.
Многие из первопроходцев в области медицины и научных исследований были облучены, и в течение первых десятилетий прошлого столетия некоторые из них погибли от лучевой болезни.
В 1928 году на Международном Конгрессе по радиологии в Стокгольме была основана международная организация – сегодня известная, как Международная Комиссия по Радиационной Защите (МКРЗ). МКРЗ собирает информацию о воздействии радиации на здоровье и выпускает рекомендации по радиационной защите.
Воздействие ионизирующего излучения на вещество.
Любое вещество, поглощая энергию солнечного излучения, нагревается. Воздействие солнечного излучения на биологическую ткань приводит к биологическим эффектам (например, загар на теле человека). Так же и ионизирующее излучение воздействует различным образом на живую и неживую материю.
Тело человека поглощает энергию и находится под биологическим воздействием ионизирующего излучения. Чтобы понять, как ионизирующее излучение воздействует на нашу биологическую ткань, исследуем процесс на уровне элементов, составляющих ткань, то есть на уровне клетки.
Клетка и молекула ДНК живого организма.
Генетический материал человека состоит из 46 хромосом, составляющих 23 пары. Внутри хромосом находится молекула ДНК, которая является сложнейшей макро-молекулой. Молекула ДНК состоит их двух цепочек в форме двойной спирали, растянув которые можно получить нить длинной около 1,5 метра
Четыре базы, названные А, С, G, Т, связывают обе спирали вместе очень оригинальным способом. А в одной спирали всегда соединяется с Т в другой спирали, С всегда соединяется с G. В случае, если одна спираль повреждена, другая служит моделью для восстановления.
Деление клетки в организме.
Клетки могут разрушиться или быть повреждены вследствие каких-либо причин. Чтобы позволить тканям тела и органам поддерживать свои функции, клетка делится с образованием двух нормальных, здоровых дочерних клеток, идентичной материнской клетке, которые заменяют повреждённую клетку.
Когда клетка делится, обе цепочки каждой молекулы ДНК разделяются, каждая затем становится частью новой спирали ДНК и в результате – мы имеем две новые клетки.
Полный процесс деления занимает от двух минут до двух часов – это очень чувствительный период в жизни клетки. Повреждение ДНК во время этого процесса может привести к различным последствиям. Однако, способность клетки к восстановлению исправит большинство дефектов прежде, чем закончится образование новой клетки.
Повреждение ДНК происходит случайно, или в результате воздействия на неё ядовитых веществ, вирусов, ультрафиолетового или ионизирующего излучения.
Воздействии ионизирующего излучения на ДНК.
Некоторые клетки являются наиболее чувствительными к ионизирующему излучению, но все они чувствительны в период деления. Это означает, что растущая ткань или ткань, которая имеет высокую скорость деления клеток, более чувствительна к ионизирующему излучению, чем другие ткани. Вот почему дети, а особенно плод беременной женщины более чувствительны к излучению, чем взрослые. По той же причине клетки раковой опухоли более чувствительны к излучению, чем здоровая ткань, так как раковая опухоль растёт очень быстро за счёт частого деления раковых клеток. Эта особенность опухоли используется для лечения рака при помощи облучения раковых клеток.
Прямые и косвенные эффекты облучения.
Ионизирующее излучение может воздействовать на ДНК непосредственно или косвенно. Наши клетки состоят на 65-75% из воды. Поэтому, наиболее вероятная молекула, которая подвергается воздействию ионизирующего излучения молекула воды. Излучение ионизирует молекулы воды, приводя к образованию различных химических активных веществ. Эти вещества, которые называются свободными радикалами, могут воздействовать на молекулу ДНК. Прямое воздействие имеет менее важное значение, поскольку оно менее вероятно. Чтобы вызвать прямой эффект, ионизирующее излучение должно разрушить молекулу ДНК.
Бета- и гамма-излучения вызывают низкую плотность ионизации, поэтому вероятность повреждения обеих цепочек спирали ДНК относительно небольшая. Обычно ущерб наносится только одной цепочке или одной базе, и это повреждение может быть восстановлено относительно эффективными функциями восстановления организма. Альфа-излучение вызывает высокую плотность ионизации. При этом возникает большая вероятность разрушения обеих цепочек ДНК. Поскольку генетическая модель клетки, таким образом, разрушается, вероятна ошибка в процессе восстановления клетки, что может даже привести к гибели клетки.
Действие радиации на организм человека.
Существуют различия между последствиями радиационного воздействия, которые возникают вскоре после облучения – острые последствия – и последствиями, которые будут наблюдаться намного позже – хронические последствия.
Острые последствия облучения.
Острые последствия обусловлены большой дозой облучения тела или органа человека за короткий срок, и в большинстве случаев приводят к гибели клеток организма. При превышении порогового значения повреждения неизбежны, и они увеличиваются с увеличением дозы. Индивидуальное пороговое значение может быть разным, и это может изменить степень повреждения каждого индивидуума. Острая лучевая болезнь и повреждение плода у беременных – примеры острых повреждений организма в результате воздействия ионизирующего излучения.
Острая лучевая болезнь.
Клетки, которые являются наиболее чувствительными к воздействию радиации – клетки с высокой частотой деления. Поэтому в первую очередь ионизирующее излучение будет воздействовать на кроветворные органы (красный костный мозг), особенно чувствительные к ионизирующему излучению. Кратковременная доза облучения на всё тело более, чем 1000 мЗв (100 бэр) приведёт к острой лучевой болезни. Множество клеток и, следовательно, большие части живой ткани будут повреждены или погибнут. Функции облучённого органа будут нарушены. Последствия интенсивного облучения организма в дозах, превышающих пороговое значение, иногда проявляются уже через час или два: человек начнёт чувствовать слабость и начнётся рвота. Эти признаки обычно уменьшаются после двух дней, и в течение двух-трёх недель – самочувствие человека улучшается. Однако, за это время число белых кровяных клеток существенно уменьшится, уменьшится и сопротивление организма заразным болезням. Это может привести к воспалительным болезням с высокой температурой, диарее и кровотечениям. Если человек поправляется от острого облучения, то останется риск хронических последствий облучения.
Незамедлительное и целенаправленное квалифицированное лечение увеличивает процент выживания.
Генетические нарушения в организме.
Различают следующие виды воздействия на клетки организма вследствие облучения в зависимости от поглощённой дозы облучения и радиоустойчивости клетки:
— Без изменений – облучение не влияет на клетку
— Клетка восстанавливает молекулу ДНК
Молекула ДНК получает ложную информацию, ведущую к мутации клетки. Мутации не обязательно отрицательные, но они могут также привести к генетическим нарушениям и раковым заболеваниям.
Хронические последствия облучения.
Рак и наследственные болезни расцениваются как хронические последствия действия радиационного облучения.
Пороговое значение дозы облучения для хронических последствий отсутствует. Чем больше доза облучения, тем выше вероятность заболевания.
Клетка, у которой генетический код был изменён, может развиться в раковую клетку. Рак – болезнь, вызванная бесконтрольным делением мутирующих клеток. Примерно 20% всех смертных случаев в мире – от раковых болезней. Признаки лейкемии, вызванной ионизирующим излучением, обнаруживаются через 3-7 лет после облучения. Другие виды раковых болезней развиваются более длительное время.
Наследственные изменения в потомстве.
ДНК в половых клетках, также могут быть повреждены ионизирующим излучением. Эти повреждения могут быть переданы следующему поколению. Но для того, чтобы это случилось, дефект клеток должен быть унаследован от обоих родителей. Необходимые условия передачи генетических изменений следующему поколению:
— Хромосома в половой клетке повреждена.
— Повреждены одинаковые хромосомы в клетках отца и матери.
— Эмбрион должен развиться. Шансы эмбриона выжить уменьшаются, если клетки повреждены.
Эти условия объясняют, почему наследственные последствия нанесения вреда организму настолько трудно оценить. Вероятность каждого условия мала. Вероятность того, что все три условия выполняются одновременно – чрезвычайно мала.
«Опасность радиации сильно преувеличена»
35 лет назад случилась Чернобыльская катастрофа. Как это было, и какие уроки мы извлекли, рассказывает А. В. Рубанович, заведующий лабораторией экологической генетики и заведующий отделом генетической безопасности Института общей генетики им. Н.И. Вавилова, профессор МФТИ.
– Александр Владимирович, 35 лет назад, 26 апреля 1986 года, случилась Чернобыльская катастрофа. Вы тогда работали в этом институте?
– Да, я пришел сюда в 1973-ем году, то есть я работаю здесь уже 47 лет. Я сразу попал в лабораторию радиационной генетики. Надеялся, что будет много поездок, экспедиций. Юношей я всем этим бредил.
– Но так оно, в общем-то, и получилось – экспедиции были.
– Так оно и получилось, да. Это была лаборатория покойного ныне Владимира Андреевича Шевченко. И вот в течение 20 лет мы ездили по разным горячим точкам страны. Кроме Чернобыля, еще были южно-уральские аварии, кыштымская — так называемый ВУРС, восточно-уральский радиационный след. Каждый год ездили и много там работали.
Ну, а потом, когда случился Чернобыль, переключились на эти работы. Авария произошла 26 апреля, а 15 мая мы уже были на месте. Прибыли на экспедиционной машине летучим отрядом и там работали в течение нескольких лет. Нам дали помещения в здании чернобыльской больницы. Мы там обосновались, навезли аппаратуру, и вплоть до 1990-го года, когда уже начался раздел Советского Союза, мы там находились.
– Что вы тогда обнаружили? К каким пришли результатами и выводам?
– Первое впечатление было совершенно ошеломительное, потому что огромные дозы обрушились на окружающую природу. Знаменитый Желтый лес – это действительно удивительное зрелище. Кроме того, сразу обратили на себя внимание бесконечные морфозы растений. Это не мутации: под влиянием больших доз облучения определенные нарушения развития происходят у растений, и растение не гибнет, но приобретает невероятные формы. Я взял с собой фотографии. Сосна похожа на какие-то секвойи. Или, допустим, я запомнил подорожник – всем знакомый, пышный подорожник, но с плоским стеблем. Большинство растительных видов после этих грандиозных доз приобретало нарушения развития. На следующий год они полностью исчезли. Все растения приобрели более-менее обычный свой вид.
– А что с людьми происходило? И, в частности, с вами. Вы же тоже подвергались большой опасности.
– Например?
– Допустим, в Индии в 1984 г. произошла авария на заводе (можно убрать) в городе Бхопал на заводе, производящем пестициды. Они выпустили 30 тонн фосгена. И там 35 тысяч человек погибло на месте, а ослепло, по-моему, 25 тысяч, ещё 200 тысяч получили паралич. То есть какие-то невероятные по масштабу жертвы, несопоставимые с Чернобылем.
– Вы считаете, что радиация не может наносить подобного ущерба?
– Конечно нет. Чернобыль – это великая трагедия, и очень жалко тех ребят, которые героически противостояли аварии – в первую очередь, пожарных. В Чернобыле погибло два человека при взрыве и 28 пожарных, которые получили такие гигантские дозы радиации, что об их спасении не могло быть и речи. Их привезли всех сюда, в Москву, в институт биофизики ФМБА, и друзья мне рассказывали, что верхние и нижние этажи отселили, потому что пробивало через бетонные слои. Они все погибли от огромных доз радиации – таких, что зашкаливало все приборы. Была документирована лучевая болезнь у 109 человек. Полмиллиона с лишним человек прошли через Чернобыль, и среди них зарегистрированных случаев лучевых болезней – 109 случаев. Для этого нужно получить не менее 1 Грея дозу радиации.
Лучевая болезнь – скверная штука. Похожа на грипп по состоянию, поскольку иммунитет подавленный. Но она лечится, проходит. Считается, от 1-го до 2-ух Грей – это лучевая болезнь в легкой форме. Когда уже 3-4 Грея, то лучевая болезнь такова, что если не лечить, то почти все гибнут. Ну, а 5-6 Грей – это и лечить бесполезно.
– Что же стало с остальными, кому лучевую болезнь не диагностировали?
– Я много работал с вертолетчиками и дозиметристами. Но они получали по пол-Грея, по четверть Грея. Это не страшно. Это не та доза, которая вызывает лучевую болезнь. Если делать цитогенетический анализ, смотреть клетки и считать поломки хромосом, то можно обнаружить: ага, человек облучался, схватил, как минимум, 0,2 Грея. Это около 20 Рентген. Когда у вас 0,5 Грея, формула крови обнаруживает, что человек облучился, но еще до лучевой болезни далеко. И, как правило, все это проходит без последствий. Поэтому огромный контингент чернобыльцев-ликвидаторов и жителей получили дозы, но не заболели. Часто спрашивают: «Ну, хорошо, люди в результате облучения получали увеличенное число аберраций в клетках крови – в лимфоцитах, и как же это? Может быть, это будет иметь последствия в виде дополнительных раковых опухолей, лейкозов?»
– Да, это важный вопрос. Вы следили ли за их судьбой? Можем ли мы сказать, что среди этих людей больше онкологических больных, чем в среднем в популяции?
– Статистически значимых данных нет. Хотя постоянно появляются публикации, что больше стало онкологических заболеваний, но в целом роста не обнаружено по результатам Чернобыля. Вообще есть только два случая массового облучения людей, последствием которых был рост рака, и только одного тип рака – рака крови.
Это два случая хрестоматийных. Один, конечно, это Хиросима и Нагасаки. Я работал в Нагасаки полгода, знаю всё это изнутри. Там сотни тысяч людей переоблученных наблюдали, у которых развилась сильная лучевая болезнь. Их обследовали, их потомство мониторили. И что же, в конечном счете, обнаружили? Только один значимый эффект: 1 Грей добавляет к обычному уровню лейкозов два случая на тысячу человек. То есть, если у каждого из нас вероятность умереть от лейкоза – одна тысячная, то, если вы облучились радиацией в 1 Грей, то это добавит два случая дополнительных. В дальнейшем урок Хиросимы полностью подтвердился.
Второй случай – у нас в ССР, когда в речку Теча были спущены в результате, опять же, аварии отходы производства плутония. Это был 1950-ый год. И вот эти татарские деревушки вдоль реки переоблучили. Порядка 100 тысяч людей получили пол-Грея и выше.
Когда в 70-ых– 80-ых стали подытоживать, нашли 37 дополнительных лейкозов, и это в точности соответствовало той оценке, которую давала Хиросима: 1 Грей дает 2 дополнительных лейкоза на тысячу облученных.
– С точки зрения человечества это немного, но с точки зрения человека и его семьи – это трагедия.
– Трагедия, когда это реализуется в лучевую болезнь. Но в основном ликвидаторы и жители, что бы там ни писали в СМИ про раки и ужасные мутации, практически не пострадали. В Чернобыле среди детей–потомков никаких не было уродств, мутаций и спонтанных абортов.
– Но это же не значит, что нам не надо бояться подобных аварий?
– Аварий точно надо бояться и делать все, чтобы их больше не было. Однако само отношение к радиации нужно менять.
– Прежде всего, потому что мы живем с радиацией, это естественный наш фон. Мало того, без нее не было бы жизни на Земле.
– Ну, конечно. Всякий из нас получает одну тысячную Грея в год – это космический фон. А есть регионы – в Иране, в Индии, в Бразилии достаточно густонаселенные, где этот фон в 100, в 1000 раз выше. И люди живут и даже не обращают внимания.
Вообще, если вспоминать Чернобыль, то у меня остались очень яркие воспоминания о том времени. Так интересно мне никогда нигде не было. Это была совершенно особая атмосфера, понимаете? Можно было войти в любой кабинет, ногой дверь открыв, и потребовать всё, что угодно. Всё будет сделано. Все люди, которых туда навезли, друг друга любили, поддерживали. Общаги гудели по ночам. Это было необыкновенное впечатление, полное единение, как, наверное, бывает во время войны.
И вот люди проработали там несколько лет, они возвращались сюда – и элементарно спивались в 90-ые годы. Они уже привыкли к этому драйву, к тому, что ты нужен. И вдруг стал не нужен никому. И они гибли массово от водки в 90-ые годы.
– Но вы не погибли. Что помогло удержаться?
– Не знаю. Может, руль?
– Какие уроки мы должны извлечь из Чернобыля сейчас, 35 лет спустя?
– Александр Владимирович, хотела вас спросить как специалиста по радиационной безопасности. Сейчас мы часто делаем компьютерную томографию, а это тоже лучевая нагрузка. В связи с эпидемией ковида многие ходят на КТ по несколько раз, и я не раз слышала мнения врачей о том, что это небезопасно. А что думаете вы?
– Есть точные оценки, какую ты получаешь дозу. А дальше возьмите, откройте «Википедию» и посмотрите, чему эта доза соответствует, каким опасностям. Если перевести все эти дозы в Греи, то вы увидите, что опасностей этих нет. Но еще раз хочу подчеркнуть, что даже среди профессионалов здесь огромный диапазон мнений. При этом я убежден – радиофобия процветает. И это не есть хорошо.
– То есть бояться нам надо не этого. А чего надо?
– Отравляющих веществ, загрязнений. Чисто техногенное и техническое загрязнение, безусловно, наносит реальный ущерб. Люди разрушают природу своими руками, часто не понимая, что пилят сук, на котором сидят. Сейчас Чернобыльская зона процветает: она нашпигована зверьем, туда собрались олени, волки, кабаны. Всё цветет буйным цветом.
– Потому что человек ушел?
– Человека убрали, да. Я когда в 73-ем году пришел в этот институт и поехал в первый раз на ВУРС, был совершенно потрясен контрастом: Южный Урал — и этот островок, эта «сигара» заражения. Там было такое количество зверья, птиц! Рыба кишела в водоемах, которые на четыре порядка имели повышенный уровень радиации. То есть для природы главный враг не радиация, а человек. Поэтому вот такой итог: если хотите жить, не надо быть врагами природы, надо её беречь и любить.