чем опасна земля на щпт

Объявления

Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал

Земля на шине (-), ЩПТ «НИПОМ»

Чтобы отправить ответ, вы должны войти или зарегистрироваться

Сообщений 4

1 Тема от kew 2015-08-24 20:16:38

Тема: Земля на шине (-), ЩПТ «НИПОМ»

Добрый день форумчане, эксплуатируем выше названный аппарат, проблема следующая на мониторе сопротивление шины по (-) меняется от 150 до 600 кОм, по фидерам ВСЕМ 999.9кОм, при проведении контроля изоляции имеем по плюсу 110В, по минусу 10В, причем при контроле по минусу, кратковременно контроллер выдает низкое сопротивление изоляции менее 4 кОм. При замере напряжения на шинах показания были следующие: «-» на корпус =+70 В, «+»на корпус +226 В. Заранее извиняюсь за возможные некорректные формулировки так как не электрик. Всегда считал что контроль Rизол ведется по фидерам, оказывается не только. Вопрос следующий в чем возможна причина неисправности, как определить? Второй вопрос если по фидерам 999,9 то есть ли смысл проверять эти цепи (они в работе останавливать оборудование проблематично)?

2 Ответ от doro 2015-08-24 20:51:13

Re: Земля на шине (-), ЩПТ «НИПОМ»

Совершенно непонятны принципы, по которым сия компания распознает замыкание на землю. Судя по информации, приведенной на сайте фирмы, ничего вразумительного они не скажут. Наседайте на поставщиков, пусть разъясняют. Но все же некоторые наблюдения:
1. Если есть информация о нарушении изоляции на ЩПТ в целом и нет такового по отходящих фидерах, ищите то ли проблемы АБ, то ли на ЩПТ до разводки по фидерам.
2. Если есть возможность отключить УКИ от земли, проверьте с помощью вольтметра электромагнитной системы (но ни как не китайским мультиметром!) напряжение полюсов относительно той же земли.
Поскольку

, будут дополнительные пошаговые вопросы. Надо бы, все же, электрика подключить.

3 Ответ от Tnemo 2015-08-28 12:40:39

Re: Земля на шине (-), ЩПТ «НИПОМ»

4 Ответ от berestov.82 2015-09-02 17:17:15

Re: Земля на шине (-), ЩПТ «НИПОМ»

Вопрос следующий в чем возможна причина неисправности, как определить? Второй вопрос если по фидерам 999,9 то есть ли смысл проверять эти цепи (они в работе останавливать оборудование проблематично)?

Источник

Объявления

Если вы интересуетесь релейной защитой и реле, то подписывайтесь на мой канал

«земля» в цепях постоянного тока

Чтобы отправить ответ, вы должны войти или зарегистрироваться

Сообщений 12

1 Тема от zevs 2012-01-04 10:24:59

Тема: «земля» в цепях постоянного тока

Существуют ли указания в нормативных документах, сколько времени можно работать с «землей» в цепях постоянного тока?

Пример: узловая подстанция 110 кВ, 5 линий 110 кВ, 6 линий 35 кВ, 20 линий 6 кВ.
Появляется «перемежающаяся земля» на плюсе постоянного тока продолжительностью от минуты до двух часов. Усилиями дежурного персонала «земля» локализирована в оперативных цепях защиты и управления транзитной ЛЭП-110 кВ. Самое время взять мегомметр в руки да поискать «слабинку». Да не тут то было чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт🙂 Диспетчера наотрез отказываются вывести линию для проверки (праздники+ответственные потребители+не совсем хорошая погода чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт🙂 ). В связи с этим и вопрос, чтобы потом ответить «если чё, я не виноват» чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт🙂

2 Ответ от zloi 2012-01-04 11:13:35

Re: «земля» в цепях постоянного тока

Существуют ли указания в нормативных документах, сколько времени можно работать с «землей» в цепях постоянного тока?

Диспетчера наотрез отказываются вывести линию для проверки (праздники+ответственные потребители+не совсем хорошая погода чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт🙂 ). В связи с этим и вопрос, чтобы потом ответить «если чё, я не виноват» чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт🙂

Вы диспа официально предупредили, что есть проблема и её возможные последствия (так, чтобы потом » бумажка была»)? Всё, дальше он решает под свою ответственность.

3 Ответ от zevs 2012-01-04 14:02:15

Re: «земля» в цепях постоянного тока

Заявку на отключение утвердили, завтра будем искать.

4 Ответ от Dnestr 2012-01-05 07:01:23

Re: «земля» в цепях постоянного тока

Заявку на отключение утвердили, завтра будем искать.

Источник

Отыскание «земли» в сети постоянного оперативного тока подстанции

чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт«Земля» в сети постоянного тока – одна из аварийных ситуаций, которая нередко случается на распределительных подстанциях. Постоянный ток на подстанции называется оперативным, он предназначен для работы устройств релейной защиты и автоматики, а также управления оборудованием подстанции.

Наличие «земли» в сети постоянного тока свидетельствует о том, что один из полюсов замыкается на землю. Данный режим работы сети постоянного тока подстанции является недопустимым и в случае возникновения аварийной ситуации на подстанции может привести к негативным последствиям. Поэтому, в случае возникновения данной ситуации необходимо немедленно приступить к поиску повреждения и в максимально короткий срок его устранить. В данной статье рассмотрим процесс поиска и устранения замыкания на «землю» в сети постоянного оперативного тока подстанции.

Возникновение «земли» в сети постоянного оперативного тока фиксируется на панели центральной сигнализации подстанции световой и звуковой сигнализацией. Первое, что следует сделать – это убедиться в том, что замыкание на землю в сети постоянного тока действительно есть.

На щите постоянного тока подстанции, как правило, расположен вольтметр контроля изоляции и соответствующие переключающие устройства, переключением которым можно замерить напряжение каждого из полюсов относительно земли. В одном положении данного переключателя вольтметр контроля изоляции включается в цепь «земля» – «+», в другом положении – соответственно – «земля» – «-». Наличие напряжения в одном из положений свидетельствует о том, что в сети постоянного тока есть замыкание на землю.

При наличии двух отдельных секций на щите постоянного тока, которые электрически не связаны, должна быть предусмотрена возможность проверки наличия напряжения относительно земли по каждой из секций отдельно.

Наличие замыкания на землю в сети постоянного тока свидетельствует о том, что нарушена изоляция одной из кабельных линий, которая подает оперативный ток к устройствам релейной защиты и автоматики или непосредственно к элементам оборудования и другим потребителям постоянного тока на подстанции. Или же причиной может быть обрыв провода, который впоследствии соприкоснулся с землей или с заземленными элементами оборудования.

Такой режим работы неприемлем, так как в таком случае устройство, которое получает питание по данному кабелю, может работать некорректно или вообще отказать (если одна из жил оборвана). Например, один из соленоидов привода высоковольтного выключателя. Если кабель, по которому постоянный ток подается на данный соленоид, поврежден, то в случае возникновения аварийной ситуации, например, короткого замыкания на линии, данный выключатель откажет, что может привести к повреждению других элементов оборудования.

Или, например, микропроцессорные устройства защиты. Как правило, микропроцессорные терминалы защит оборудования подстанции питаются от постоянного оперативного тока. Питание данных шкафов осуществляется от нескольких кабелей, проложенных от щита постоянного тока. В большинстве случаев один кабель питает несколько шкафов, например, шесть.

Если данный кабель повредится, то микропроцессорные терминалы защит, автоматики и управления оборудованием будут обесточены. Следовательно, все шесть присоединений останутся без защиты, и в случае возникновения аварийной ситуации оборудование не будет отключено и может повредиться (в случае отсутствия или отказа резервных защит).

Поэтому найти повреждение, которые привело к возникновению замыкания на землю, следует в максимально короткий срок.

Поиск замыкания на землю в сети постоянного тока сводится к очередному отключению всех отходящих линий, которые питаются от шкафа постоянного тока подстанции. Приведем пример отыскания места повреждения.

Отключаем автоматические выключатели, которые питают кольцо соленоидов выключателей 110 кВ и проверяем контроль изоляции. Как правило, кольцо соленоидов питается от двух автоматических выключателей разных секций щита постоянного тока для обеспечения высокой надежности схемы.

Если напряжение на каждом из полюсов относительно земли отсутствует, то это свидетельствует о том, что замыкание на землю находится на кольце соленоидов выключателей 110 кВ. В противном случае, то есть если не было изменений и замыкание на землю осталось, включаем отключенный ранее автоматический выключатель и переходим к дальнейшему отысканию повреждения. То есть поочередно отключаем остальные автоматические выключатели с последующей проверкой контроля изоляции по вольтметру.

Итак, когда найдена линия, при отключении которой замыкание на землю пропадает, следует найти и устранить неисправность. Рассмотрим порядок дальнейших действий по отысканию повреждения в случае, если замыкание на землю находится в кольце соленоидов.

Далее наша цель – локализировать повреждение. Кольцо соленоидов выключателей 110 кВ состоит из нескольких участков. Кабель постоянного оперативного тока идет от щита постоянного тока в шкаф вторичной коммутации одного из выключателей 110 кВ. В этом шкафу кабель разветвляется: один идет непосредственно в цепи управления данным выключателем, а другой к шкафу вторичной коммутации следующего выключателя.

От второго шкафа кабель оперативного тока идет к третьему и так далее, в зависимости от количества выключателей, расположенных в распределительном устройстве 110 кВ подстанции. От последнего выключателя кабель идет к щиту постоянного тока, то есть все соленоиды выключателей соединены в кольцо.

В каждом шкафу вторичной коммутации есть рубильники. Один из них подает оперативный ток на выключатель, другой на следующий шкаф вторичной коммутации. Для локализации поврежденного участка отключаем рубильник в шкафу вторичной коммутации, которым подается напряжение на все кольцо, например, на первый шкаф, к которому подается оперативный ток от первой секции щита постоянного тока.

Таким образом, включив автоматический выключатель кольца соленоидов 110 кВ первой секции ЩПТ, мы подаем напряжение на кабель, который идет до шкафа вторичной коммутации первого выключателя.

Включаем данный выключатель и проверяем контроль изоляции. Если «земля» присутствует, то однозначно повреждение находится на данном участке кабеля. Если контроль изоляции в норме, то приступаем к дальнейшему отысканию поврежденного участка.

Отключаем рубильник, который подает напряжение на шкаф вторичной коммутации второго выключателя, и включаем рубильник, который подает оперативный ток на цепи управления первым выключателем 110 кВ, проверяем контроль изоляции. Появление «земли» свидетельствует о том, что повреждение находится в цепях вторичной коммутации выключателя. В таком случае выключатель следует вывести в ремонт для устранения данной неисправности.

Также необходимо запитать кольцо соленоидов, оставив отключенным рубильник присоединения, где найдено повреждение вторичных цепей. Далее необходимо проверить контроль изоляции, чтобы убедиться в том, что замыкания на «землю» в сети постоянного тока больше нет.

Если после подачи оперативного тока на первый выключатель контроль изоляции остался в норме, то идем дальше. Отключаем рубильники во втором шкафу, которые подают оперативный ток на второй выключатель и на следующий, третий шкаф вторичной коммутации.

В первом шкафу включаем рубильник, который подает напряжение на второй шкаф, то есть подключаем к кольцу кабель, идущий от первого шкафа ко второму шкафу вторичной коммутации.

Аналогично, если «земля» появилась, то поврежден данный участок кабеля. В противном случае, то есть когда контроль изоляции в норме, включаем рубильник во втором шкафу, который подает напряжение на цепи постоянного тока второго выключателя, проверяем контроль изоляции, чтобы убедиться в наличии или отсутствии «земли».

Аналогичным образом производим поэтапное включение участков кольца соленоидов и проверяем контроль изоляции. Изначально, когда проверяется кабель, который идет от первой секции щита постоянного тока до первого шкафа вторичной коммутации выключателя, необходимо проверить второй кабель, который запитывается от второй секции ЩПТ и идет до шкафа вторичной коммутации выключателя.

Возможно, повреждение находится на втором кабеле, и, чтобы не делать лишнюю работу – не проверять цепи выключателей и кабельные линии, проложенные между шкафами вторичной коммутации выключателей, необходимо проверить оба кабеля сразу.

Следует отметить, что при выводе в ремонт выключателя, в шкафу вторичной коммутации которого обнаружено повреждение цепей оперативного тока, не всегда удается отключить данный выключатель дистанционно или с места при помощи привода, так как может быть оборван один из проводов цепей вторичной коммутации.

Если цепи управления выключателем неисправны и при этом нет возможности отключить выключатель вручную, с места, то следует снять нагрузку с выключателя и отключить его с двух сторон разъединителями. При возможности, необходимо снять не только нагрузку, но и напряжение с выключателя, так как при отсутствии нагрузки у потребителя, линейным разъединителем отключаются емкостные токи линии, что не рекомендуется.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Замыкание на землю: что это такое, определение, в чем опасность

Определение термина «замыкание на землю».

Замыкание на землю — это возникновение случайного проводящего пути между частью, находящейся под напряжением, и Землёй или открытой проводящей частью, или сторонней проводящей частью, или защитным проводником (согласно ГОСТ 30331.1-2013 [1]).

Харечко Ю.В. в своем словаре электрика [2] на основании детального анализа нормативной документации более детально поясняет суть термина «замыкание на землю»:

« В международной и национальной нормативной документации под повреждением (замыканием) на землю понимают возникновение случайного проводящего пути между какой-то проводящей частью, находящейся под напряжением, и землей. Это происходит, например, при падении фазного провода ВЛ на землю из-за его обрыва. Однако в условиях единичного повреждения изоляции какой-то токоведущей части электроустановки здания наиболее вероятно появление электрического соединения между указанной токоведущей частью и открытой проводящей частью электрооборудования класса I, защитным проводником или сторонней проводящей частью здания. Соединение этой токоведущей части непосредственно с землей практически невозможно. Поэтому в национальной нормативной документации, распространяющейся на электроустановки зданий, под замыканием на землю целесообразно понимать электрическое соединение токоведущей части и с открытой проводящей частью (наиболее вероятное событие), и с защитным проводником, и со сторонней проводящей частью, и с землей (наименее вероятное событие). »

Для электроустановок зданий, которые соответствуют типам заземления системы TT и IT, Харечко Ю.В. детализирует [3]:

« Действительно, в электроустановках зданий, соответствующих типам заземления системы TT и IT, при замыкании токоведущей части на открытую проводящую часть электрооборудования класса I ток замыкания на землю протекает в локальную землю через защитный проводник и заземляющее устройство электроустановки здания. То есть в таких электроустановках зданий замыкание токоведущей части на землю происходит через промежуточные проводящие части. »

Для электроустановок зданий, соответствующих типам заземления системы TN-C, TN-S и TN-C-S Харечко Ю.В. также дает пояснения [3]:

« В электроустановках зданий, соответствующих типам заземления системы TN-C, TN-S и TN-C-S, при замыкании токоведущей части на открытую проводящую часть электрооборудования класса I не происходит «классического» замыкания на землю. В таких электроустановках зданий ток замыкания на землю из токоведущей части по защитным проводникам протекает к заземленной токоведущей части источника питания. Только малая доля этого тока через заземляющее устройство электроустановки здания протекает в локальную землю. Однако с целью унификации понятий для одинаковых повреждений логично назвать замыканием на землю рассмотренные замыкания токоведущих частей на открытые проводящие части и в системах TT и IT, и в системах TN-C, TN-S и TN-C-S. »

В чем опасность замыкания на землю?

Харечко Ю.В. дополняет [3]:

« В результате замыкания на землю из токоведущей части в землю, а также на проводящие части, соединенные защитными проводниками с заземляющим устройством электроустановки здания или с заземленной токоведущей частью источника питания, протекает ток замыкания на землю. Подобный аварийный режим электроустановки здания опасен для человека и животных тем, что они могут быть поражены электрическим током. Поэтому в электроустановках зданий устанавливают защитные устройства, обнаруживающие ток замыкания на землю и отключающие аварийные части электроустановки здания или всю электроустановку здания при появлении замыкания на землю. »

О проводящем пути.

Следует отметить, что:

Источник

СОПТ: поиск замыкания на землю в цепях оперативного постоянного тока

И мы продолжаем серию публикаций, посвященную системам оперативного постоянного тока. Ранее были рассмотрены такие темы, как

Как иногда бывает полезно заглянуть в старые руководящие указания и еще раз убедиться в том, что всё новое – это хорошо забытое старое!

1. Анализ сложившейся ситуации

Продолжая тему СОПТ, хотелось бы остановиться на одном её разделе, который уже два десятка лет вызывает споры среди проектировщиков и головную боль у эксплуатации: поиск замыкания на землю в цепях оперативного постоянного тока.

Начиная с 1997 года – в Мосэнерго вводятся в работу первые подстанции с микропроцессорными (МП) защитами – ПС 110 кВ «Зубовская», ПС 220 кВ «Центральная», «Куркино» и другие. С их появлением приходит понимание того, что существующий метод поиска фидера с пониженной изоляцией недопустим. Поочередное снятие питания со всех вторичных устройств, принятое при этом, ведет к перезагрузке МП терминалов и выводу их из работы на время от десятка секунд до нескольких минут. Этот факт противоречил требованию параграфа 5.9.5 ПТЭЭС – «Силовое электрооборудование и линии электропередачи могут находиться под напряжением только с включенной релейной защитой от всех видов повреждений…».

Готовых вариантов решения этой проблемы в то время не существовало. Энергетические компании, действующие за пределами России, её не ощущали ввиду практического отсутствия замыканий на землю на своих объектах. Тому способствовало использование ими добротно изготовленного оборудования и высокое качество монтажа вторичной коммутации, что является недостижимым у нас и в настоящее время.

Вариантом решения проблемы был выбран поиск и разработка новых устройств, способных определить фидер с пониженной изоляцией без его отключения. При этом, основное внимание было уделено разработке двух типов устройств:

В качестве первого типа вышеназванных устройств в Мосэнерго было выбрано устройство «Сапфир», уже выпускаемое фирмой «Белэнергоремонтналадка». На первых подстанциях нового поколения ФСК ЕЭС таким устройством становится «BENDER» (ПС 750 кВ «Череповецкая», ПС 500 кВ «Беркут»). Хотя все эти устройства оказались весьма несовершенными (об этом мы поговорим чуть ниже), их последующие аналоги уже дока- зали свою правомерность. К ним на сегодня можно отнести Микро СРЗ, ЭКРА СКИ и другие.

Устройства второго типа были разработаны задолго до появления МП защит и рассматривались, как альтернатива методу с отверточной разборкой схемы. Изначально они не предназначались для поиска индивидуальных автоматических выключателей (АВ) или предохранителей (Пр), за которыми произошло замыкание на землю. Это действие, выполнялось их поочередным отключением и возлагалось на оперативный персонал, что и было закреплено параграфом 5.2 инструкции [2]. Появление МП защит исключило возможность этого действия. Взамен ему проектными организациями был предложен метод поиска АВ или Пр при помощи ППЗЗ, требующий от исполнителя знание схем вторичной коммутации. Тем самым была нарушена логика вышеупомянутой инструкции [2], предписывающей выявление АВ или Пр оперативным персоналом, в обязанность которого не входит знание этих схем. Итогом «полета мысли» проектных организаций в этом вопросе оказалась необходимость привлечения персонала служб РЗА в любое время дня и ночи для принятия оперативным персоналом верного решения.

Что можно предложить для решения этой проблемы? То, что уже предлагалось, но не получило широкого распространения. То, что уже было прописано в старых руководящих указаниях [2]: поочередный перевод питания устройств на резервную шинку, гальванически изолированную от АБ. В проектах для «Росэнергоатома» этот метод получил свое естественное продолжение (Нововоронежская АЭС-2, Ленинградская АЭС-1) как традиция. Для ПС ФСК ЕЭС этот метод скорее рассматривался как экзотика и применялся только в исключительных случаях. Впервые он был использован на ПС 500 кВ «Хехцир» [4] и на ПС 500 кВ Московского кольца в 2006 году. Общим в обоих случаях было использование в качестве независимого источника DC/DC преобразователей и отсутствие понимания того, что необходимо применять резервную шинку не только для присоединений 110–500 кВ, но и для КРУ 10–20 кВ. Различия заключались в устройствах перевода питания на резервную шинку:

Недостатками этих схем были:

На что еще хотелось бы обратить внимание при проектировании этих устройств: чуть выше уже упоминалось, что поиск при помощи резервной шинки проектировщики до настоящего времени предлагали только для радиальных схем, в которых все АВ сконцентрированы в специальных шкафах ШАВ (или ШРОТ, если кому-то это название кажется более точным). Использование этого метода для кольцевых схем (КРУ, КРУЭ) не предусматривалось. Если для КРУЭ это можно объяснить отсутствием в его ячейках МП-защит, то для КРУ причиной тому является только несогласованность в выдаче технических требований на ячейки КРУ и СОПТ.

Теперь вернемся к устройствам АПЗЗ. Чувствительность первых таких устройств была тем ниже, чем выше была емкость контролируемой ими сети. При емкости сети 8 мкФ их чувствительность позволяла обнаружить только металлическое замыкание на землю. При емкости сети 15–20 мкФ (средняя емкость вторичной коммутации на ПС ФСК ЕЭС) они оказались практически непригодными. Второй недостаток – это их несовместимость с ранее существовавшим устройством сигнализации замыканий на землю – мостовая схема с низкоомными резисторами и реле РН-51 (рис. 1а). Эта проблема была решена просто, но неверно: устройство сигнализации было исключено из схемы. Неправильность этого решения связано с тем, что, помимо сигнализации, на это устройство возлагалась и функция выравнивания напряжения полюсов относительно земли – формирование нейтрали сопротивлениями 31 кОм (рис. 1б). Параметры этой схемы были выбраны из условий несрабатывания промежуточных реле (Uср = 0,6–0,7Uном) при замыкании на землю в цепи катушки реле, если сопротивление изоляции положительного полюса при этом составляло 40 кОм (уставка предупредительной сигнализации). Для дискретных входов (при тех же режимах) схема обеспечивает их несрабатывание при снижении сопротивления изоляции до 60 кОм. При отказе от использования функции формирования нейтрали мы получаем гарантированное ложное срабатывание уже при снижении изоляции на (+) до 150 кОм (Uср = 0,6–0,7Uном). Следовательно, при любой замене традиционного контроля изоляции на что-то иное обязательно надо учитывать необходимость функции формирования нейтрали. Ни «Сапфир», ни BENDER не имеют этой функции и не могут работать с внешним блоком формирования нейтрали (БФН). С правовой точки зрения отсутствие устройств, выполняющих функцию БФН, есть нарушение нормативных документов. Новое поколение устройств АПЗЗ лишено этих недостатков.

Учитывая всё вышесказанное, можно предложить следующие требования к комплексу технических устройств, предназначенных для снижения последствий замыканий на землю и поиска места повреждения изоляции (рис. 2).

чем опасна земля на щпт. Смотреть фото чем опасна земля на щпт. Смотреть картинку чем опасна земля на щпт. Картинка про чем опасна земля на щпт. Фото чем опасна земля на щпт Рис.2. Схема комплекса устройств снижения последствий замыканий на землю и поиска места повреждения изоляции.

2 Формирование нейтрали СОПТ, контроль изоляции и поиск места замыкания на землю.

2.1. В цепях, имеющих гальваническую связь с АБ, для ограничения последствий замыкания на землю и сокращения времени его поиска на ПС необходимо иметь следующие устройства:

š – замер величины сопротивления изоляции каждого полюса;

š – сигнализация о снижении сопротивления изоляции до заданных уставок (предупредительная и аварийная);

š – замер напряжений полюсов АБ относительно земли;

š УКИ и АПЗЗ должны работать без отключения БФН или иметь его в своем составе;

2.2. В цепях постоянного тока, работающих под номинальным напряжением СОПТ и не имеющих гальванической связи с АБ, должны быть установлены следующие устройства:

Поиск замыканий на землю в этих цепях должен осуществляться методом кратковременного последовательного отключения всех автоматических выключателей.

2.3. Каждая гальванически изолированная часть СОПТ, работающая под её номинальным напряжением, должна иметь собственное УКИ.

2.4. В цепях питания устройств мониторинга СОПТ (напряжением 24–48 В) никакие устройства, предусмотренные пунктами 2.1 и 2.2, устанавливать не требуется.

2.5. БФН является устройством, симметрично шунтирующим полюса АБ относительно земли сопротивлениями не более 30 кОм. БФН предназначен для уменьшения перекоса напряжений полюсов постоянного тока СОПТ относительно земли. Функция БФН может быть заложена как в отдельное устройство, так и в УКИ или в АПЗЗ. Не допускается нахождение в работе одновременно двух и более БФН для цепей, гальванически связанных с одной АБ.

2.6. УКИ с функцией замера величины сопротивления изоляции должно обеспечивать её замер по каждому полюсу в отдельности в диапазоне от 1 до 1000 кОм при величине суммарной емкости сети в диапазоне от 1 до 200 мкФ. Точность замеров сопротивления изоляции не должна зависеть от емкости сети. УКИ обязательно должно выполнять свои функции при включенном БФН. Работа УКИ не должна создавать перекос напряжения по полюсам более 50 В и увеличение напряжения «минуса» относительно земли более 140 В. Величина тока, инжектируемого УКИ в сеть, не должна быть более 1,5 мА. Устройство должно иметь не менее 2 уставок сигнализации при снижении сопротивления изоляции с диапазоном регулирования от 20 до 100 кОм.

2.7. УКИ с функцией сигнализации «снижение изоляции» должно иметь одну уставку 60 кОм.

2.8. Поиск места замыкания на землю должен быть трехуровневым:

2.9. На первом и втором уровнях поиск замыкания на землю должен выполняться оперативным персоналом.

2.10. На третьем уровне поиск замыкания на землю осуществляется персоналом служб РЗА.

2.11. АПЗЗ первого уровня должно обладать следующими характеристиками:

2.12. В случае объединения в одном устройстве функций УКИ, АПЗЗ и БФН требуется установка резервного УКИ с функцией БФН. Одновременно допускается подключение к шинам АБ только одного БФН.

2.13. Второй уровень поиска места замыканий на землю должен быть организован во всех местах установки индивидуальных автоматических выключателей (ШАВ, КРУ), от которых выполнено питание микропроцессорных терминалов РЗА, ПА,АУВ.

2.14. Для организации второго уровня поиска места замыканий на землю необходимы:

š – двух DC/DC преобразователей с гальванической развязкой входных и выходных цепей. Каждый преобразователь питается от шин ЩПТ своей АБ. Мощность одного преобразователя выбирается с учетом питания самого мощного потребителя постоянного тока с 20% запасом. Преобразователь должен иметь внутреннюю защиту от внешних КЗ, селективную с электромагнитной отсечкой внешних автоматических выключателей;

š – УКИ с функцией сигнализации о снижении сопротивления изоляции до величины 60 кОм;

š – защиты минимального напряжения с действием на независимые расцепители автоматических выключателей, включенных на входе DC/DC преобразователей;

– АВ с независимыми расцепителями на входе каждого блока DC/DC преобразователей;

š – коммутационных аппаратов, позволяющих перевести каждое присоединение шкафа на шинку ЕАбез потери его питания (набор из 3 клемм, каждая из которых состоит из одного выхода и двух входов, имеющих между собой соединительный мостик. Набор должен иметь общий для всех трех клемм поводок для переключающих мостиков (рис. 3). К этим аппаратам и месту их установки должны предъявляться следующие требования:

2.15. Шинка ЕА, помимо поиска замыкания на землю, должна использоваться для выделения на изолированную работу отдельного устройства, в цепях которого обнаружено замыкание на землю.

2.16. Автоматические выключатели, через которые проходят цепи к блокам питания микропроцессорных устройств РЗА, ПА или АУВ, должны быть помечены красной точкой, предупреждающей оперативный персонал о том, что их кратковременное отключение приведет к длительной потере этих устройств. Для всех остальных выключателей, не помеченных красной точкой, допускается их кратковременное отключение для поиска замыкания на землю.

2.17. В технические требования на КРУ должны входить пункты по организации второго уровня поиска места замыкания на землю.

2.18. Не допускается использовать для перевода на резервное питание или для поиска места замыкания на землю коммутационные аппараты, установленные вне ЩПТ, к которым подведены цепи одновременно от двух АБ.

2.19. На третьем уровне, для поиска конкретного места снижения сопротивления изоляции, на каждой ПС необходимо иметь ППЗЗ, работа которого должна быть согласована с работой АПЗЗ.

Литература„

1. Алимов Ю. Н., Галкин И. А., Шаварин Н. И.Особенности контроля изоляции в цепях оперативного постоянного тока 220 В // Энергоэксперт. 2011. No3.

„2. Типовая инструкция по предотвращению и ликвидации аварий в электрической части энергосистем. РД 34.20.561‐ 92. ОРГРЭС, Москва, 1992 г. „

3. Приказ РАО «ЕЭС России» от 26.09.2005 No644 «О введении в действие стандарта «Правила предотвращения развития и ликвидации нарушений нормального режима электрической части энергосистем». 6.5.2 Отыскание замыканий на землю в сети постоянного тока электростанций и подстанций. „

4. Шеметов А. С. Метод поиска замыканий на землю в системе оперативного постоянного тока, апробированный на подстанции 500 кВ «Хехцир» // Энергоэксперт. 2014. No 5.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *