чем обусловлены инструментальные погрешности

Погрешность измерений. Классификация

Погрешность средств измерения и результатов измерения.

Погрешности средств измерений – отклонения метрологических свойств или параметров средств измерений от номинальных, влияющие на погрешности результатов измерений (создающие так называемые инструментальные ошибки измерений).
Погрешность результата измерения – отклонение результата измерения от действительного (истинного) значения измеряемой величины.

Инструментальные и методические погрешности.

Методическая погрешность обусловлена несовершенством метода измерений или упрощениями, допущенными при измерениях. Так, она возникает из-за использования приближенных формул при расчете результата или неправильной методики измерений. Выбор ошибочной методики возможен из-за несоответствия (неадекватности) измеряемой физической величины и ее модели.

Причиной методической погрешности может быть не учитываемое взаимное влияние объекта измерений и измерительных приборов или недостаточная точность такого учета. Например, методическая погрешность возникает при измерениях падения напряжения на участке цепи с помощью вольтметра, так как из-за шунтирующего действия вольтметра измеряемое напряжение уменьшается. Механизм взаимного влияния может быть изучен, а погрешности рассчитаны и учтены.

Инструментальная погрешность обусловлена несовершенством применяемых средств измерений. Причинами ее возникновения являются неточности, допущенные при изготовлении и регулировке приборов, изменение параметров элементов конструкции и схемы вследствие старения. В высокочувствительных приборах могут сильно проявляться их внутренние шумы.

Статическая и динамическая погрешности.

Статические и динамические погрешности относятся к погрешностям результата измерений. В большей части приборов статическая и динамическая погрешности оказываются связаны между собой, поскольку соотношение между этими видами погрешностей зависит от характеристик прибора и характерного времени изменения величины.

Систематическая и случайная погрешности.

Систематическая погрешность измерения – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же физической величины. Систематические погрешности являются в общем случае функцией измеряемой величины, влияющих величин (температуры, влажности, напряжения питания и пр.) и времени. В функции измеряемой величины систематические погрешности входят при поверке и аттестации образцовых приборов.

Причинами возникновения систематических составляющих погрешности измерения являются:

Случайной погрешностью называют составляющие погрешности измерений, изменяющиеся случайным образом при повторных измерениях одной и той же величины. Случайные погрешности определяются совместным действием ряда причин: внутренними шумами элементов электронных схем, наводками на входные цепи средств измерений, пульсацией постоянного питающего напряжения, дискретностью счета.

Погрешности адекватности и градуировки.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешностью адекватности модели называют погрешность при выборе функциональной зависимости. Характерным примером может служить построение линейной зависимости по данным, которые лучше описываются степенным рядом с малыми нелинейными членами.

Погрешность адекватности относится к измерениям для проверки модели. Если зависимость параметра состояния от уровней входного фактора задана при моделировании объекта достаточно точно, то погрешность адекватности оказывается минимальной. Эта погрешность может зависеть от динамического диапазона измерений, например, если однофакторная зависимость задана при моделировании параболой, то в небольшом диапазоне она будет мало отличаться от экспоненциальной зависимости. Если диапазон измерений увеличить, то погрешность адекватности сильно возрастет.

Абсолютная, относительная и приведенная погрешности.

Абсолютная погрешность – алгебраическая разность между номинальным и действительным значениями измеряемой величины. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина, в расчетах её принято обозначать греческой буквой – ∆. На рисунке ниже ∆X и ∆Y – абсолютные погрешности.

Относительная погрешность – отношение абсолютной погрешности к тому значению, которое принимается за истинное. Относительная погрешность является безразмерной величиной, либо измеряется в процентах, в расчетах обозначается буквой – δ.

Приведённая погрешность – погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле

где Xn – нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Аддитивные и мультипликативные погрешности.

Различать аддитивные и мультипликативные погрешности легче всего по полосе погрешностей (см.рис.).

Если абсолютная погрешность не зависит от значения измеряемой величины, то полоса определяется аддитивной погрешностью (а). Иногда аддитивную погрешность называют погрешностью нуля.

Если постоянной величиной является относительная погрешность, то полоса погрешностей меняется в пределах диапазона измерений и погрешность называется мультипликативной (б). Ярким примером аддитивной погрешности является погрешность квантования (оцифровки).

Класс точности измерений зависит от вида погрешностей. Рассмотрим класс точности измерений для аддитивной и мультипликативной погрешностей:

– для аддитивной погрешности:
аддитивная погрешность
где Х – верхний предел шкалы, ∆0 – абсолютная аддитивная погрешность.
– для мультипликативной погрешности:
мультипликативная погрешность
порог чувствительности прибора – это условие определяет порог чувствительности прибора (измерений).

Источник

Методические и инструментальные погрешности

Методические и инструментальные погрешности являются разновид-ностью систематических погрешностей.

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешностиМетодические погрешностивозникают из-за несовершенства метода измерения, неточности формул, применяемыхдля описания явлений, положенных в основу измерения. Т.е. это такие погрешности, которые не могут быть приписаны данному средству измерений и не могут быть указаны в его паспорте.

Примером методической погрешности может служить погрешность измерения напряжения вольт-метром с конечным внутренним сопротивлением (рис.5.1).

До подключения вольтметра к зажимам цепи 1-2 напряжение на этих зажимах равно

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности, где чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности.

Тогда абсолютная методическая погрешность будет

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности,

а относительная чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности.

Вследствие шунтирования вольтметром участка цепи, на котором измеряется напряжение, оно оказывается меньшим, чем до присоединения вольтметра. Поэтому для одного и того же вольтметра, подключаемого поочередно к разным участкам исследуемой цепи, эта погрешность различна. Т.е. на низкоомных участках она ничтожна, а на высокоомных может быть очень большой. При правильно поставленных экспериментах методическая погрешность может быть незначительной.

Аддитивные и мультипликативные погрешности

Любое средство измерений обладает статической характеристикой, т.е. характеристикой, функционально связывающей выходную величину Y c входной величиной X. Обычно статическая характеристика является линейной. При отсутствии погрешностей для нее справедливо соотношение

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности,

где Yн – номинальная статическая характеристика средства измерения; Sн – номинальная чувствительность средства измерения.

Наличие погрешности средства измерения вызывает изменение чувствительности (Sн+DS), а также смещение результата измерения на величину Dа, т.е.

Погрешность DY результата измерений при этом определится как

Первая составляющая погрешности является мультипликативной (Dм=DS×X), а вторая аддитивной (Dа=Dа).

Дадим определение аддитивной и мультипликативной погрешностям.

Аддитивной называется погрешность абсолютное значение которой неизменно во всем диапазоне измеряемой величины.

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешностиСистематическая аддитивная погрешность смещает номинальную характеристику параллельно вверх или вниз на величину ±Dа (рис.5.2).

Примером систематической аддитивной погрешности может служить погрешность от неточной установки прибора на нуль, от контактной э.д.с. в цепи постоянного тока. Аддитивную погрешность еще называют погрешностью нуля.

Мультипликативной называют погрешность абсолютное значение которой изменяется пропорционально измеряемой величине.

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешностиПри систематической мульти-пликативной погрешности реальная характеристика отклоняется от номинальной вверх или вниз (рис.5.3).

Примерами систематических мультипликативных погрешностей являются погрешности из-за изменения коэффициента деления делителя напряжения, из-за изменения жесткости пружины измерительного механизма и т.п. Мультипликативную погрешность еще называют погрешностью чувствительности.

В средствах измерения аддитивные и мультипликативные погрешности, как правило, присутствуют одновременно. В этом случае результирующая погрешность определяется суммой аддитивной и мультипликативной погрешностей D=Dа+Dм=Dа+dм×Х, где dм – относительная мультипликативная погрешность. В зависимости от соотношений аддитивной (Dа) и мультипликативной (Dм) погрешностей классы точности средств измерений обозначаются по-разному. Можно выделить три характерных случая соотношения этих погрешностей 1) Dа=0, Dм¹0; 2) Dа¹0, Dм=0; 3) Dа@Dм.

Источник

Погрешности измерений и их классификация. Лекция

При измерении физических величии с помощью даже самых точных и совершенных средств и методов их результат всегда отличается от истин­ного значения измеряемой физической величины, т.е. определяется с неко­торой погрешностью. Источниками погрешностей измерения являются сле­дующие причины: несовершенство используемых методов и средств измере­ний, нестабильность измеряемых физических величин, непостоянство климатических условий, внешние и внутренние помехи, а также различные субъек­тивные факторы экспериментатора.

Определение «погрешность» является одним из центральных в метрологии, в котором используются понятия «погрешность результата измере­ния» и «погрешность средства измерения».

Погрешностью результата измерения (погрешностью измерения) называется отклонение результата измерения от истинного значения измеряемой физической величины. Так как истинное значение измеряемой величины неизвестно, то при количественной оценке погрешности пользуются дейст­вительным значением физической величины.

Это значение находится экспериментальным путем и настолько близко к истинному значению, что для поставленной измерительной задачи может быть использовано вместо него.

По способу количественного выражения погрешности измерения делятся на абсолютные, относительные и приведенные.

и знак полученной погрешности, но не определяет качество самого проведенного измерения.

Понятие погрешности характеризует как бы несовершенство измере­ния. Характеристикой качества измерения является используемое в метроло­гии понятие точности измерений, отражающее меру близости результатов измерений к истинному значению измеряемой физической величины. Точ­ность и погрешность связаны обратной зависимостью. Иначе говоря, высо­кой точности измерений соответствует малая погрешность. Так, например, измерение силы тока в 10 А и 100 А может быть выполнено с идентичной аб­солютной погрешностью ∆ = ±1 А. Однако качество (точность) первого из­мерения ниже второго. Поэтому, чтобы иметь возможность сравнивать каче­ство измерений, введено понятие относительной погрешности.

Относительной погрешностью δ называется отношение абсолютной погрешности измерения к истинному значению измеряемой величины:

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности

Мерой точности измерений служит величина, обратная модулю отно­сительной погрешности, т.е. 1/|δ|. Погрешность δ часто выражают в про­центах:

δ = 100 △ /хн (%). Поскольку обычно △⋍ хн, то относительная по­грешность может быть определена как δ ⋍ △ /х или δ = 100 △ /х (%).

Если измерение выполнено однократно и за абсолютную погрешность результата измерения △ принята разность между показанием прибора и ис­тинным значением измеряемой величины хН то из соотношения (1.2) следу­ет, что значение относительной погрешности δ уменьшается с ростом вели­чины хн (здесь предполагается независимость △ от хн ). Поэтому для изме­рений целесообразно выбирать такой прибор, показания которого были бы в последней части его шкалы (диапазона измерений), а для сравнения различ­ных приборов использовать понятие приведенной погрешности.

Приведенной погрешностью δпр, выражающей потенциальную точ­ность измерений, называется отношение абсолютной погрешности △ к неко­торому нормирующему значению XN (например, к конечному значению шкалы прибора или сумме конечных значений шкал при двусторонней шка­ле).

По характеру (закономерности) изменения погрешности измерений подразделяются на систематические, случайные и грубые (промахи).

• возможна их коррекция поправками только в данный момент времени, а далее эти погрешности вновь непредсказуемо изменяются;

• изменения прогрессирующих погрешностей во времени представляют со­бой нестационарный случайный процесс (характеристики которого изменяются во времени), и поэтому в рамках достаточно полно разработанной теории стационарных случайных процессов они могут быть описаны лишь с некоторыми ограничениями.

Грубые погрешности (промахи) — погрешности, существенно превы­шающие ожидаемые при данных условиях измерения. Такие погрешности возникают из-за ошибок оператора или неучтенных внешних воздействий. Их выявляют при обработке результатов измерений и исключают из рас­смотрения, пользуясь определенными правилами.

По причинам возникновения погрешности измерения подразделяются на методические, инструментальные, внешние и субъективные.

Методические погрешности возникают обычно из-за несовершенства метода измерений, использования неверных теоретических предпосылок (допущений) при измерениях, а также из-за влияния выбранного средства изме­рения на измеряемые физические величины. При подключении электроизме­рительного прибора от источника сигнала потребляется некоторая мощность. Это приводит к искажению режима работы источника сигнала и вызывает погрешность метода измерения (методическую погрешность).

Инструментальные (аппаратурные, приборные) погрешности возни­кают из-за несовершенства средств измерения» т.е. из-за погрешностей средств измерений. Источниками инструментальных погрешностей могут быть, например, неточная градуировка прибора и смещение нуля, вариация показаний прибора в процессе эксплуатации и т.д. Уменьшают инструмен­тальные погрешности применением более точного прибора.

Субъективные погрешности вызываются ошибками оператора при от­счете показаний средств измерения (погрешности от небрежности и невни­мания оператора, от параллакса, т.е. от неправильного направления взгляда при отсчете показаний стрелочного прибора и пр.). Подобные погрешности устраняются применением современных цифровых приборов или автомати­ческих методов измерения.

По характеру поведения измеряемой физической величины в процессе измерений различают статические и динамические погрешности.

Статические погрешности возникают при измерении установившего­ся значения измеряемой величины, т.е. когда эта величина перестает изме­няться во времени.

Динамические погрешности имеют место при динамических измерени­ях, когда измеряемая величина изменяется во времени и требуется установить закон ее изменения. Причина появления динамических погрешностей состо­ит в несоответствии скоростных (временных) характеристик прибора и ско­рости изменения измеряемой величины.

Средства измерений могут применяться в нормальных и рабочих усло­виях.

Эти условия для конкретных видов СИ ( средств измерения ) установлены в стандартах или технических условиях.

Нормальным условиям применения средств измерений должен удовлетворять ряд следующих (основных) требований:

температура окружающего воздуха (20±5) °С;

относительная влажность (65±15) %;

атмосферное давле­ние (100±4) кПа;

напряжение питающей сети (220±4) В и (115±2,5) В;

частота сети (50±1) Гц и (400±12) Гц.

Как следует из перечисленных требований, нормальные условия применения СИ характеризуются диапазоном значений влияющих на них величин типа климатических факторов и параметров элек­тропитания.

Рабочие условия применения СИ определяются диапазоном значений влияющих величин не только климатического характера и параметров электропитания, но и типа механических воздействий. В частности, диапазон климатических воздействий делится на ряд групп, охватывающих широкий диапазон изменения окружающей температуры.

Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.

Источник

Чем обусловлены инструментальные погрешности

Всероссийский научно-исследовательский институт
оптико-физических измерений

ПОИСК И НАВИГАЦИЯ

МЫ НА YOUTUBE

Погрешности измерений

Погрешность результата измерения (англ. error of a measurement) – отклонение результата измерения от истинного (действительного) значения измеряемой величины.
Примечания:

Инструментальная погрешность измерения (англ. instrumental error) – составляющая погрешности измерения, обусловленная погрешностью применяемого средства измерений.

Погрешность метода измерений (англ. error of method) – составляющая систематической погрешности измерений, обусловленная несовершенством принятого метода измерений.
Примечания:

Погрешность (измерения) из-за изменений условий измерения – составляющая систематической погрешности измерения, являющаяся следствием неучтенного влияния отклонения в одну сторону какого-либо из параметров, характеризующих условия измерений, от установленного значения.
Примечание. Этот термин применяют в случае неучтенного или недостаточно учтенного действия той или иной влияющей величины (температуры, атмосферного давления, влажности воздуха, напряженности магнитного поля, вибрации и др.); неправильной установки средств измерений, нарушения правил их взаимного расположения и др.

Субъективная погрешность измерения – составляющая систематической погрешности измерений, обусловленная индивидуальными особенностями оператора.
Примечания:

Неисключенная систематическая погрешность – составляющая погрешности результата измерений, обусловленная погрешностями вычисления и введения поправок на влияние систематических погрешностей или систематической погрешностью, поправка на действие которой не введена вследствие ее малости.
Примечания:

чем обусловлены инструментальные погрешности. Смотреть фото чем обусловлены инструментальные погрешности. Смотреть картинку чем обусловлены инструментальные погрешности. Картинка про чем обусловлены инструментальные погрешности. Фото чем обусловлены инструментальные погрешности

Случайная погрешность измерения (англ. random error) – составляющая погрешности результата измерения, изменяющаяся случайным образом (по знаку и значению) при повторных измерениях, проведенных с одинаковой тщательностью, одной и той же физической величины.

Абсолютная погрешность измерения (англ. absolute error of a measurement) – погрешность измерения, выраженная в единицах измеряемой величины.

Абсолютное значение погрешности (англ. absolute value of an error) – значение погрешности без учета ее знака (модуль погрешности).
Примечание. Необходимо различать термины абсолютная погрешность и абсолютное значение погрешности.

Относительная погрешность измерения (англ. relative error) – погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины.
Примечание. Относительную погрешность в долях или процентах находят из отношений:

Рассеяние результатов в ряду измерений (англ. dispersion) – несовпадение результатов измерений одной и той же величины в ряду равноточных измерений, как правило, обусловленное действием случайных погрешностей.
Примечания:

Размах результатов измерений (англ. ) – оценка Rn рассеяния результатов единичных измерений физической n величины, образующих ряд (или выборку из n измерений), вычисляемая по формуле:

Среднее квадратическое отклонение результатов единичных измерений в ряду измерений (англ. experimental (sample) standard deviation) – характеристика S рассеяния результатов измерений в ряду равноточных измерений одной и той же физической величины, вычисляемая по формуле:

Среднее квадратическое отклонение среднего арифметического значения результатов измерений (англ. experimental (sample) standard deviation) – характеристика Sx рассеяния среднего арифметического значения результатов равноточных измерений одной и той же величины, вычисляемая по формуле:

Доверительные границы погрешности результата измерений – наибольшее и наименьшее значения погрешности измерений, ограничивающие интервал, внутри которого с заданной вероятностью находится искомое (истинное) значение погрешности результата измерений.

Поправка (англ. correction) – значение величины, вводимое в неисправленный результат измерения с целью исключения составляющих систематической погрешности.
Примечание. Знак поправки противоположен знаку погрешности. Поправку, прибавляемую к номинальному значению меры, называют поправкой к значению меры; поправку, вводимую в показание измерительного прибора, называют поправкой к показанию прибора.

Поправочный множитель (англ. correction factor) – числовой коэффициент, на который умножают неисправленный результат измерения с целью исключения влияния систематической погрешности.
Примечание. Поправочный множитель используют в случаях, когда систематическая погрешность пропорциональна значению величины.

Точность результата измерений (англ. accuracy of measurement) – одна из характеристик качества измерения, отражающая близость к нулю погрешности результата измерения.
Примечание. Считают, что чем меньше погрешность измерения, тем больше его точность.

Неопределенность измерений (англ. uncertainty of measurement) – параметр, связанный с результатом измерений и характеризующий рассеяние значений, которые можно приписать измеряемой величине.

Погрешность метода поверки – погрешность применяемого метода передачи размера единицы при поверке.

Погрешность градуировки средства измерений – погрешность действительного значения величины, приписанного той или иной отметке шкалы средства измерений в результате градуировки.

Погрешность воспроизведения единицы физической величины – погрешность результата измерений, выполняемых при воспроизведении единицы физической величины.
Примечание. Погрешность воспроизведения единицы при помощи государственных эталонов обычно указывают в виде ее составляющих: неисключенной систематической погрешности; случайной погрешности; нестабильности за год.

Погрешность передачи размера единицы физической величины – погрешность результата измерений, выполняемых при передаче размера единицы.
Примечание. В погрешность передачи размера единицы входят как неисключенные систематические, так и случайные погрешности метода и средств измерений.

Статическая погрешность измерений – погрешность результата измерений, свойственная условиям статического измерения.

Динамическая погрешность измерений – погрешность результата измерений, свойственная условиям динамического измерения.

Промах – погрешность результата отдельного измерения, входящего в ряд измерений, которая для данных условий резко отличается от остальных результатов этого ряда.
Примечание. Иногда вместо термина промах применяют термин грубая погрешность измерений.

Предельная погрешность измерения в ряду измерений – максимальная погрешность измерения (плюс, минус), допускаемая для данной измерительной задачи.

Погрешность результата однократного измерения – погрешность одного измерения (не входящего в ряд измерений), оцениваемая на основании известных погрешностей средства и метода измерений в данных условиях (измерений).
Пример. При однократном измерении микрометром какого-либо размера детали получено значение величины, равное 12,55 мм. При этом еще до измерения известно, что погрешность микрометра в данном диапазоне составляет +/- 0,01 мм, и погрешность метода (непосредственной оценки) в данном случае принята равной нулю. Следовательно, погрешность полученного результата будет равна +/- 0,01 мм в данных условиях измерений.

Суммарное среднее квадратическое отклонение среднего арифметического значения результатов измерений – характеристика S рассеяния среднего арифметического результатов измерений, обусловленная влиянием случайных и неисключенных систематических погрешностей и вычисляемая по формуле:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Основные метрологические термины и определения: по РМГ 29-99 (с изменениями от 04.08.2010)